JAVA 线程池

Blocking Queue 是一个阻塞队列,主要是平衡生产者与消费者之间的速度差异。线程池中的线程相当于任务消费者,不断地获取任务和消费任务。在生产者和消费者模式下,两边的速率可能不一致,当生产者迟迟不提交新任务,线程池中的消费者就需要等待,在阻塞队列中等待,当生产速率太快消费者消费跟不上多出来的任务也会放到阻塞队列中

自定义线程池
@FunctionalInterface // 拒绝策略,在队列满时执行的策略
interface RejectPolicy<T> {
    void reject(BlockingQueue<T> queue, T task);
}
class BlockingQueue<T> {
    // 1. 任务队列,双向链表,ArrayDeque 的性能比 LinkedList较好
    private Deque<T> queue = new ArrayDeque<>();
    // 2. 锁,防止一个任务被多个线程获取 & 防止多个生产者同时生产任务造成任务丢失
    private ReentrantLock lock = new ReentrantLock();
    // 3. 生产者条件变量
    private Condition fullWaitSet = lock.newCondition();
    // 4. 消费者条件变量
    private Condition emptyWaitSet = lock.newCondition();
    // 5. 容量
    private int capcity;
    
    public BlockingQueue(int capcity) {
        this.capcity = capcity;
    }
    // 带超时阻塞获取
    public T poll(long timeout, TimeUnit unit) {
        lock.lock();
        try {
            // 将 timeout 统一转换为 纳秒
            long nanos = unit.toNanos(timeout);
            while (queue.isEmpty()) {
                try {
                    // 返回值是剩余时间
                    if (nanos <= 0) {
                        return null;
                    }
                    nanos = emptyWaitSet.awaitNanos(nanos);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            T t = queue.removeFirst();
            fullWaitSet.signal();
            return t;
        } finally {
            lock.unlock();
        }
    }
    
    // 阻塞获取
    public T take() {
        lock.lock();
        try {
            // 防止错误唤醒
            while (queue.isEmpty()) {
                try {
                    emptyWaitSet.await();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            T t = queue.removeFirst();
            fullWaitSet.signal();
            return t;
        } finally {
            lock.unlock();
        }
    }
    
    // 阻塞添加
    public void put(T task) {
        lock.lock();
        try {
            while (queue.size() == capcity) {
                try {
                    log.debug("等待加入任务队列 {} ...", task);
                    fullWaitSet.await();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            log.debug("加入任务队列 {}", task);
            // 将任务添加到队列尾部
            queue.addLast(task);
            emptyWaitSet.signal();
        } finally {
            lock.unlock();
        }
    }
   
    // 带超时时间阻塞添加
    public boolean offer(T task, long timeout, TimeUnit timeUnit) {
        lock.lock();
        try {
            long nanos = timeUnit.toNanos(timeout);
            while (queue.size() == capcity) {
                try {
                    if(nanos <= 0) {
                        return false;
                    }
                    log.debug("等待加入任务队列 {} ...", task);
                    // 返回剩余等待时间
                    nanos = fullWaitSet.awaitNanos(nanos);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            log.debug("加入任务队列 {}", task);
            queue.addLast(task);
            emptyWaitSet.signal();
            return true;
        } finally {
            lock.unlock();
        }
    }

    // 获取大小
    public int size() {
        lock.lock();
        try {
            return queue.size();
        } finally {
            lock.unlock();
        }
    }
    
    public void tryPut(RejectPolicy<T> rejectPolicy, T task) {
        lock.lock();
        try {
            // 判断队列是否满
            if(queue.size() == capcity) {
                rejectPolicy.reject(this, task);
            } else { // 有空闲
                log.debug("加入任务队列 {}", task);
                queue.addLast(task);
                emptyWaitSet.signal();
            }
        } finally {
            lock.unlock();
        }
    }
}
class ThreadPool {
    // 任务队列
    private BlockingQueue<Runnable> taskQueue;
    // 线程集合
    private HashSet<Worker> workers = new HashSet<>();
    // 核心线程数
    private int coreSize;
    // 获取任务时的超时时间
    private long timeout;
    private TimeUnit timeUnit;
    // 拒绝策略
    private RejectPolicy<Runnable> rejectPolicy;
    
    // 执行任务
    public void execute(Runnable task) {
        // 当任务数没有超过 coreSize 时,直接交给 worker 对象执行
        // 如果任务数超过 coreSize 时,加入任务队列暂存
        synchronized (workers) {
            if(workers.size() < coreSize) {
                Worker worker = new Worker(task);
                log.debug("新增 worker{}, {}", worker, task);
                workers.add(worker);
                worker.start();
            } else {
                // taskQueue.put(task);
                // 队列集合满时,几种不同的策略
                // 1) 死等
                // 2) 带超时等待
                // 3) 让调用者放弃任务执行
                // 4) 让调用者抛出异常
                // 5) 让调用者自己执行任务
                
                taskQueue.tryPut(rejectPolicy, task);
            }
        }
    }
    
    public ThreadPool(int coreSize, long timeout, TimeUnit timeUnit, int queueCapcity, 
                      RejectPolicy<Runnable> rejectPolicy) {
        this.coreSize = coreSize;
        this.timeout = timeout;
        this.timeUnit = timeUnit;
        this.taskQueue = new BlockingQueue<>(queueCapcity);
        this.rejectPolicy = rejectPolicy;
    }
    
    class Worker extends Thread{
        private Runnable task;
        
        public Worker(Runnable task) {
            this.task = task;
        }
        
        @Override
        public void run() {
            // 执行任务
            // 1) 当 task 不为空,执行任务
            // 2) 当 task 执行完毕,再接着从任务队列获取任务并执行
            // while(task != null || (task = taskQueue.take()) != null) {  // 死等,创建的 worker 线程不释放
            while(task != null || (task = taskQueue.poll(timeout, timeUnit)) != null) { // 超时等待,没有待执行的任务就释放 worker
                try {
                    log.debug("正在执行...{}", task);
                    task.run();
                } catch (Exception e) {
                    e.printStackTrace();
                } finally {
                    task = null;
                }
            }
            // 任务执行完移除空闲的 worker
            synchronized (workers) {
                log.debug("worker 被移除{}", this);
                workers.remove(this);
            }
        }
    }
}

测试

public static void main(String[] args) {
    ThreadPool threadPool = new ThreadPool(1,
            1000, TimeUnit.MILLISECONDS, 1, (queue, task)->{
                // 1. 死等,一直等前面的任务执行完,以加新的任务进入队列
                // queue.put(task);
                // 2) 带超时等待
                // queue.offer(task, 1500, TimeUnit.MILLISECONDS);
                // 3) 让调用者放弃任务执行
                // log.debug("放弃{}", task);
                // 4) 让调用者抛出异常,队列满后,剩余的任务全部不执行
                // throw new RuntimeException("任务执行失败 " + task);
                // 5) 让调用者自己执行任务
                task.run();
            });
    for (int i = 0; i < 4; i++) {
        int j = i;
        threadPool.execute(() -> {
            try {
                Thread.sleep(1000L);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            log.debug("{}", j);
        });
    }
}

ThreadPoolExecutor

线程池状态

ThreadPoolExecutor 使用 int 的高 3 位来表示线程池状态,低 29 位表示线程数量

状态名高 3 位接收新任务处理阻塞队列任务说明
RUNNING111YY
SHUTDOWN000NY不会接收新任务,但会处理阻塞队列剩余任务
STOP001NN会中断正在执行的任务,并抛弃阻塞队列任务
TIDYING010--任务全执行完毕,活动线程为 0 即将进入终结
TERMINATED011--终结状态
构造方法
public ThreadPoolExecutor(int corePoolSize,
                          int maximumPoolSize,
                          long keepAliveTime,
                          TimeUnit unit,
                          BlockingQueue<Runnable> workQueue,
                          ThreadFactory threadFactory,
                          RejectedExecutionHandler handler)
  • corePoolSize 核心线程数目 (最多保留的线程数)
  • maximumPoolSize 最大线程数目
  • keepAliveTime 生存时间 - 针对救急线程
  • unit 时间单位 - 针对救急线程
  • workQueue 阻塞队列
  • threadFactory 线程工厂 - 可以为线程创建时起名字,便于排查问题
  • handler 拒绝策略

解析

  • 线程池中刚开始没有线程(线程都是懒惰创建的),当一个任务提交给线程池后,线程池会创建一个新线程来执行任务。 当线程数达到 corePoolSize 并没有线程空闲,这时再加入任务,新加的任务会被加入workQueue 队列排 队,直到有空闲的线程。
  • 如果队列选择了有界队列,那么任务超过了队列大小时,会创建 maximumPoolSize - corePoolSize 数目的线程来救急。 (队列只有选择有界队列才会创建救急线程,不要使用无界队列)
  • 如果线程到达 maximumPoolSize 仍然有新任务这时会执行拒绝策略。拒绝策略 jdk 提供了 4 种实现,其它著名框架也提供了实现
    • AbortPolicy 让调用者抛出 RejectedExecutionException 异常,这是默认策略

    • CallerRunsPolicy 让调用者运行任务 DiscardPolicy 放弃本次任务

    • DiscardOldestPolicy 放弃队列中最早的任务,本任务取而代之

      jdk 提供的 4 种实现:

  其它框架的实现:

- Dubbo 的实现,在抛出 RejectedExecutionException 异常之前会记录日志,并 dump 线程栈信息,方便定位问题
- Netty 的实现,是创建一个新线程来执行任务
- ActiveMQ 的实现,带超时等待(60s)尝试放入队列,类似我们之前自定义的拒绝策略
- PinPoint 的实现,它使用了一个拒绝策略链,会逐一尝试策略链中每种拒绝策略
  • 当高峰过去后,超过corePoolSize 的救急线程如果一段时间没有任务做,需要结束节省资源,这个时间由 keepAliveTime 和 unit 来控制。核心线程没有生存时间,核心线程任务执行完后仍然会被保留在线程池中

根据这个构造方法,JDK Executors 类中提供了众多工厂方法来创建各种用途的线程池:

newFixedThreadPool
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
                              0L, TimeUnit.MILLISECONDS,
                              new LinkedBlockingQueue<Runnable>());
}

特点

  • 核心线程数 == 最大线程数(没有救急线程被创建),因此也无需超时时间
  • 阻塞队列是无界的,可以放任意数量的任务

适用场景

  • 适用于任务量已知,相对耗时的任务
newCachedThreadPool
public static ExecutorService newCachedThreadPool() {
    return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                  60L, TimeUnit.SECONDS,
                                  new SynchronousQueue<Runnable>());
}

特点

  • 核心线程数是 0, 最大线程数是 Integer.MAX_VALUE,救急线程的空闲生存时间是 60s,意味着
    • 全部都是救急线程(60s 后可以回收),在救急线程执行完一个任务后,生存周期内还可以获取 SynchronousQueue 中的任务去执行
    • 救急线程可以无限创建
  • 队列采用了 SynchronousQueue 实现特点是,它没有容量,没有线程来取的时候,放的线程是放不进去的,放的线程会阻塞

SynchronousQueue 测试

SynchronousQueue<Integer> integers = new SynchronousQueue<>();
new Thread(() -> {
    try {
        log.debug("putting {} ", 1);
        integers.put(1);
        log.debug("{} putted...", 1);
        log.debug("putting...{} ", 2);
        integers.put(2);
        log.debug("{} putted...", 2);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
},"t1").start();
sleep(1);
new Thread(() -> {
    try {
        log.debug("taking {}", 1);
        integers.take();
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
},"t2").start();
sleep(1);
new Thread(() -> {
    try {
        log.debug("taking {}", 2);
        integers.take();
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
},"t3").start();

运行效果

14:48:15.500 c.TestSynchronousQueue [t1] - putting 1 
14:48:16.500 c.TestSynchronousQueue [t2] - taking 1 
14:48:16.500 c.TestSynchronousQueue [t1] - 1 putted... 
14:48:16.500 c.TestSynchronousQueue [t1] - putting...2 
14:48:17.502 c.TestSynchronousQueue [t3] - taking 2 
14:48:17.503 c.TestSynchronousQueue [t1] - 2 putted... 

适用场景

  • 整个线程池表现为线程数会根据任务量不断增长,没有上限,当任务执行完毕,空闲 1分钟后释放线 程。 适合任务数比较密集,但每个任务执行时间较短的情况
newSingleThreadExecutor
public static ExecutorService newSingleThreadExecutor() {
    return new FinalizableDelegatedExecutorService
    (new ThreadPoolExecutor(1, 1,
                            0L, TimeUnit.MILLISECONDS,
                            new LinkedBlockingQueue<Runnable>()));
}

适用场景

  • 希望多个任务排队执行。线程数固定为 1,任务数多于 1 时,会放入无界队列排队。任务执行完毕,这唯一的线程也不会被释放。

区别:

  • 自己创建一个单线程串行执行任务,如果任务执行失败(抛异常了)而终止那么没有任何补救措施,后面的任务全部不能被执行,而线程池还会新建一个线程,保证池的正常工作
  • Executors.newSingleThreadExecutor() 线程个数始终为1,不能修改
    • FinalizableDelegatedExecutorService 应用的是装饰器模式,只对外暴露了 ExecutorService 接口,因此不能调用 ThreadPoolExecutor 中特有的方法,对其参数进行修改
  • Executors.newFixedThreadPool(1) 初始时为1,以后还可以修改
    • 对外暴露的是 ThreadPoolExecutor 对象,可以强转后调用 setCorePoolSize 等方法进行修改核心线程数等
提交任务
// 执行任务
void execute(Runnable command);

// 提交任务 task,主线程中用返回值 Future 获得线程池中任务执行结果(使用了保护性暂停模式)
<T> Future<T> submit(Callable<T> task);

// 提交 tasks 中所有任务
<T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
throws InterruptedException;

// 提交 tasks 中所有任务,带超时时间,如果在时间范围内任务执行不完,会取消掉后续的任务
<T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,
                              long timeout, TimeUnit unit)
throws InterruptedException;

// 提交 tasks 中所有任务,哪个任务先成功执行完毕,返回此任务执行结果,其它任务取消
<T> T invokeAny(Collection<? extends Callable<T>> tasks)
throws InterruptedException, ExecutionException;

// 提交 tasks 中所有任务,哪个任务先成功执行完毕,返回此任务执行结果,其它任务取消,带超时时间
<T> T invokeAny(Collection<? extends Callable<T>> tasks,
                long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException;
关闭线程池
shutdown
/*
线程池状态变为 SHUTDOWN
- 不会接收新任务
- 但已提交任务会执行完
- 此方法不会阻塞调用线程的执行
*/
void shutdown();
public void shutdown() {
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        checkShutdownAccess();
        // 修改线程池状态
        advanceRunState(SHUTDOWN);
        // 仅会打断空闲线程
        interruptIdleWorkers();
        onShutdown(); // 扩展点 ScheduledThreadPoolExecutor
    } finally {
        mainLock.unlock();
    }
    // 尝试终结(没有运行的线程可以立刻终结,如果还有运行的线程也不会等)
    tryTerminate();
}
shutdownNow
/*
线程池状态变为 STOP
- 不会接收新任务
- 会将队列中的任务返回
- 并用 interrupt 的方式中断正在执行的任务
*/
List<Runnable> shutdownNow();
public List<Runnable> shutdownNow() {
    List<Runnable> tasks;
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        checkShutdownAccess();
        // 修改线程池状态
        advanceRunState(STOP);
        // 打断所有线程
        interruptWorkers();
        // 获取队列中剩余任务
        tasks = drainQueue();
    } finally {
        mainLock.unlock();
    }
    // 尝试终结
    tryTerminate();
    return tasks;
}
其它方法
// 不在 RUNNING 状态的线程池,此方法就返回 true
boolean isShutdown();

// 线程池状态是否是 TERMINATED
boolean isTerminated();

// 调用 shutdown 后,由于调用线程并不会等待所有任务运行结束,因此如果它想在线程池 TERMINATED 后做些事情,可以利用此方法等待,如果线程池中的任务提前全部执行完,也会直接往下执行。(使用Futrue来判断线程池中的任务是否全部执行完更合适,因为你不确定任务执行完到底需要多久)
boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值