[poj3041] Cow Acrobats ( W+S的数学证明 )

本文详细解析了POJ 3041牛杂技问题的解决思路,通过对比两种放置方案的风险,推导出最优解,并提供了一段完整的C++实现代码。
/*
    poj3041 Cow Acrobats BY zhuhua
    Time Limit: 1000MS
    AC Time: 172MS

    已经放的有sum
    方案1:b上a下
        Risk1(a)=sum+Wb-Sa
        Risk1(b)=sum-Sb
    方案2:a上b下
        Risk2(a)=sum-Sa
        Risk2(b)=sum+Wa-Sb
    假设方案1更优秀,那么max(Risk1(a),Risk(b))<max(Risk2(a),Risk2(b))
                然而已有Risk2(a)<Risk1(a),
                所以max(Risk2(a),Risk2(b))只可能是Risk2(b)
                (如果max(Risk2(a),Risk2(b)=Risk2(a)的话max2<max1那么方案2变得优秀了)
                (注意此时优秀的方案中上下风险大小未知)
                可以得到两个方程
                        (1)Risk2(b)>Risk1(a)
                        (2)Risk2(b)>Risk1(b)
                即      (1)sum+Wa-Sb>sum+Wb-Sa
                        (2)sum+Wa-Sb>sum-Sb(显然)
                最后我们把原来的不等式划到有效的只剩(1)
                (1)就是神秘的Wa+Sa>Wb+Sb
    b上a下 Wb+Sb<Wa+Sa
    按照W+S从小到大排序但是注意优秀的方案内的上下风险大小不一定,所以还要扫一遍。
    网上题解渣的一批看了很久才搞懂。
*/
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long ll;
const int nmax=50050;

struct COW{ll w,s;};
bool cmp(COW X ,COW Y){
    return X.w+X.s<Y.w+Y.s;
}
int N;
COW cow[nmax];


int main(){
    scanf("%d",&N);
    for(int i=1;i<=N;i++)
        scanf("%I64d%I64d",&cow[i].w,&cow[i].s);
    sort(cow+1,cow+1+N,cmp);
    ll sum=0,maxf=-1e9+11;
    for(int i=1;i<=N;i++){
        maxf=max(maxf,sum-cow[i].s);
        sum+=cow[i].w;
    }
    cout<<maxf<<endl;
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值