Randomly Wired Neural Networks

本文探讨了Facebook AI Research(FAIR)发布的一篇关于如何利用图论中的随机网络生成算法来构建不同神经网络架构的论文。研究重点在于随机网络生成,对比了传统神经架构搜索中对操作和中间节点连接的优化,提出随机连接可以提供更灵活的网络结构空间。通过ResNet和DenseNet等架构的例子,展示了连接模式对卷积神经网络的影响。论文使用了图论中的ER、BA和WS算法来构造随机无向图,并转换为有向无环图,用于构建神经网络结构。实验结果显示,随机连接神经网络在性能上可与ResNet、ResNeXt等精细设计的网络相媲美,甚至在特定条件下超越它们。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Randomly Wired Neural Networks

A Neural architecture search paper published by FAIR. This paper explore a novel way to look at how we can generate different neural network architectures specifically based on random network generation algorithms from graph theory.

many neural architecture search techniques such as those use reinforcement learning or evolutionary algorithms or even the differentiable architecture search starts algorithm describe the neural architecture search space as a joint optimization of the wiring from nodes representing the state of the neural network and operation meaning what operation is conducted to transform the state of that node .so for example, a different operations could include an average pool

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SimonChenHere

打赏奖励,以资鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值