设:a=27a=2^7a=27,b=5b=5b=5
∴a−b3=3\therefore a - b^3 = 3∴a−b3=3
∴b(a−b3)+1=16=24\therefore b(a - b^3) + 1 = 16 = 2^4∴b(a−b3)+1=16=24
∴232+1=24∗228+1=[b∗(a−b3)+1]∗a4+1=(ab−b4)∗a4+a4+1=(1−a4∗b4)+a4∗(1+ab)=(1+a2b2)(1+ab)(1−ab)+a4∗(1+ab)=(1+ab)∗[(1+a2b2)(1−ab)+a4]\begin{aligned}
\therefore 2^{32}+1
& = 2^4*2^{28}+1 \\[2ex]
& = \left[b*(a-b^3)+1\right]*a^4+1\\[2ex]
& = (ab-b^4)*a^4+a^4+1\\[2ex]
& = (1-a^4*b^4)+a^4*(1+ab) \\[2ex]
& = (1+a^2b^2)(1+ab)(1-ab)+a^4*(1+ab) \\[2ex]
& = (1+ab)*\left[(1+a^2b^2)(1-ab)+a^4\right]
\end{aligned}∴232+1=24∗228+1=[b∗(a−b3)+1]∗a4+1=(ab−b4)∗a4+a4+1=(1−a4∗b4)+a4∗(1+ab)=(1+a2b2)(1+ab)(1−ab)+a4∗(1+ab)=(1+ab)∗[(1+a2b2)(1−ab)+a4]
∴232+1\therefore 2^{32}+1∴232+1不是质数