sklearn库中的linear_model.LinearRegression

本文详细介绍了sklearn库中的LinearRegression模型,包括参数如fit_intercept、normalize和n_jobs的含义及作用。LinearRegression会计算特征的系数coef_和截距intercept_。模型提供了fit、predict和score等方法,score函数通过计算残差平方和来评估预测效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参数:

fit_intercept: 布尔型,默认为true

说明:是否对训练数据进行中心化。如果该变量为false,则表明输入的数据已经进行了中心化,在下面的过程里不进行中心化处理;否则,对输入的训练数据进行中心化处理

normalize布尔型,默认为false

说明:是否对数据进行标准化处理

copy_X 布尔型,默认为true

说明:

是否对X复制,如果选择false,则直接对原数据进行覆盖。(即经过中心化,标准化后,是否把新数据覆盖到原数据上)

n_jobs 整型, 默认为1

说明

:计算时设置的任务个数(number of jobs)。如果选择-1则代表使用所有的CPU。这一参数的对于目标个数>1(n_targets>1)且足够大规模的问题有加速作用。

返回值:

coef_ 数组型变量, 形状为(n_features,)或(n_targets, n_features)

说明:对于线性回归问题计算得到的feature的系数。如果输入的是多目标问题,则返回一个二维数组(n_targets, n_features);如果是单目标问题,返回一个一维数组 (n_features,)。

intercept_ 数组型变量

说明:线性模型中的独立项。

注:该算法仅仅是scipy.linalg.lstsq经过封装后的估计器。

方法:

decision_fun

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值