问题 E: 合并果子
题目描述
合并果子
(fruit.pas/c/cpp)
在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。
所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。
输入
输入包括两行,第一行是一个整数n(1<=n<=10000),表示果子的种类数。
第二行包含n个整数,用空格分隔,第i个整数ai(1<=ai<=20000)是第i种果子的数目。
输出
输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于2^31。
样例输入
3 1 2 9
样例输出
15
提示
本题请用两张算法完成:
1.堆的应用
2.单调队列的应用
AC代码:
#include<cstdio>
#include<queue>
using namespace std;
priority_queue<long long ,vector<long long>,greater<long long>>q;
int main(){
int n;
long long temp,x,y,ans = 0;
scanf("%d",&n);
for(int i = 0;i < n;i++){
scanf("%lld",&temp);
q.push(temp);
}
while(q.size() > 1){
x = q.top();
q.pop();
y = q.top();
q.pop();
q.push(x+y);
ans += x+y;
}
printf("%lld\n",ans);
return 0;
}
/**************************************************************
Problem: 5068
User: 2015212040209
Language: C++
Result: 正确
Time:4 ms
Memory:1440 kb
****************************************************************/