题意:https://blog.youkuaiyun.com/Haipai1998/article/details/81582886 求一椭球到(0,0,0)的最近距离
#include<cstdio>
#include<vector>
#include<cmath>
#include<math.h>
#include<time.h>
#include<string>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<map>
#define PI acos(-1.0)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int N=1005;
const int MOD=1e9+7;
const double eps=1e-10;
int sign(double x) { //三态函数,减少精度问题
return abs(x) < eps ? 0 : x < 0 ? -1 : 1;
}
double a,b,c,d,e,f;
int n;
int dir[8][2]={0,-1,0,1,1,0,-1,0,1,1,1,-1,-1,1,-1,-1};
double cul(double x,double y,double z){
return sqrt(x*x+y*y+z*z);
}
double myrand(){
return rand()%10000/10000.0;
}
double get_nz(double x,double y)
{
double A=c;
double B=d*y+e*x;
double C=-1.0*(1-f*x*y-a*x*x-b*y*y);
double delta=B*B-4*A*C;
if(sign(delta)<0) return (double)(MOD+10);
double z1=(-B-sqrt(delta))/2/A;
double z2=(-B+sqrt(delta))/2/A;
return sign(cul(x,y,z1)-cul(x,y,z2))<0?z1:z2;
}
void SA(double &res)
{
double T=1;
double x=0,y=0,z=sqrt(1.0/c);
double E=cul(x,y,z);
while(T>eps){
double mn=1e20;
double tx,ty,tz;
for(int i=0;i<8;i++){
double nx=x+dir[i][0]*T;
double ny=y+dir[i][1]*T;
double nz=get_nz(nx,ny);
if(nz>=MOD) continue;
double tE=cul(nx,ny,nz);
if(tE < mn){
mn=tE;
tx=nx,ty=ny,tz=nz;
}
}
if(sign(mn-E)<0 || (mn-E)/T<myrand())
{
E=mn;
x=tx,y=ty,z=tz;
}
T*=0.99;//要成0.99
}
res=E;
}
void mian(){
double res;
SA(res);
printf("%.10f\n",res);
}
int main(void){
srand(time(0));
while(scanf("%lf%lf%lf%lf%lf%lf",&a,&b,&c,&d,&e,&f)!=EOF){
mian();
}
return 0;
}