Describe
对于一个n个变量的n个方程的式子,惊醒求解!
经过了…
变成了…
最后就是…
代码(普通高斯消元)
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <cstring>
#define ll long long
#define N 205
using namespace std;
int n;
double a[N][N],val[N],score[N];
void Gossi()
{
for(int i=1; i<=n; i++) // ²Ù×÷µÄµÚ¼¸¸ö Êý×Ö ±ÈÈç 1 2 3 4 ...
for(int j=i+1; j<=n; j++) // ö¾ÙÏÂÃæµÄÁÐ i+1 i+2 i+3...
{
int loc=i+1;
while(!a[i][i]&&loc<=n)
{
swap(a[i],a[loc]);
loc++;
}
double res=a[i][i]/a[j][i];
for(int v=i+1; v<=n; v++)
a[j][v]=(a[j][v]*res)-a[i][v];
score[j]=res*score[j]-score[i];
}
val[n]=score[n]/a[n][n];
for(int i=n-1; i>=1; i--)
{
double res=0;
for(int j=i+1; j<=n; j++)
res+=val[j]*a[i][j];
val[i]=(score[i]-res)/a[i][i];
}
}
int main()
{
scanf("%d",&n);
for(int i=1; i<=n; i++)
{
for(int j=1; j<=n; j++)
scanf("%lf",&a[i][j]);
scanf("%lf",&score[i]);
}
Gossi();
for(int i=1; i<=n; i++)
printf("%.2lf\n",val[i]);
return 0;
}
费马小定理(Gauss)
#include <bits/stdc++.h>
#define LL long long
#define int long long
using namespace std;
const int m1 = (1e9 + 7);
const int m2 = (1e9 + 9);
const int maxn = 210;
LL m,temp,a[maxn][maxn],b[maxn][maxn],A[maxn],B[maxn];
int n; char s;
LL po(LL x,int y,int mo)
{
if (y == 1) return x;
LL res = po(x,y >> 1,mo);
res = (res * res) % mo;
if (y & 1) res = (res * x) % mo;
return res;
}
signed main()
{
scanf("%d",&n);
for (int i = 1;i <= n;++i)
{
for (int j = 1;j <= n;++j) scanf("%lld",&a[i][j]),b[i][j]=a[i][j];
LL x1 = 0, x2 = 0;
while ( (s = getchar())&&!isdigit(s));
while (isdigit(s))
{
x1 = (x1 * 10 + s - '0')%m1;
x2 = (x2 * 10 + s - '0')%m2;
s = getchar();
}
a[i][0]=m1 - x1; b[i][0]=m2 - x2;
}
for (int i = 1;i < n;++i)
{
LL x=po(a[i][i],m1-2,m1);
a[i][0]=a[i][0]*x%m1;
for (int j = i;j <= n;++j) a[i][j]=a[i][j]*x%m1;
for (int j = i + 1;j <= n;++j)
{
x=a[j][i]; a[j][0] = (a[j][0]-x*a[i][0]%m1)%m1;
for (int k = i;k <= n;++k) a[j][k]=(a[j][k]-x*a[i][k]%m1)%m1;
}
}
for (int i = n;~i;--i)
{
A[i]=-a[i][0] % m1 * po(a[i][i],m1-2,m1)%m1;
for (int j = 1;j < i;++j) a[j][0]=(a[j][0]+a[j][i]*A[i]%m1)%m1;
}
for (int i = 1;i < n;++i)
{
int x=po(b[i][i],m2-2,m2); b[i][0]=(b[i][0]*x + m2)%m2;
for (int j = i;j <= n;++j) b[i][j]=(b[i][j]*x + m2)%m2;
for (int j = i + 1;j <= n;++j){
x = b[j][i]; b[j][0] = (b[j][0]-x*b[i][0]%m2 + m2)%m2;
for (int k = i;k <= n;++k) b[j][k]=(b[j][k] - x * b[i][k]%m2 + m2)%m2;
}
}
for (int i = n;i > 0;--i){
B[i] = (-b[i][0])*po(b[i][i],m2-2,m2)%m2;
for (int j=1;j<i;++j) b[j][0]=(b[j][0]+b[j][i]*B[i]%m2)%m2;
}
int x = (m1 + 1) / 2; m=1ll*m1*m2;
for (int i=1;i<=n;++i)
{
temp=(A[i]*m2+B[i]*m1)%m;
if (temp<0) temp+=m;
printf("%lld\n",(temp*x-(LL)((double)temp/m*x)* m + m)%m);
}
return 0;
}