解读Towards Unified Depth and Semantic Prediction from a Single Image(2)

本文探讨了一种将语义分割与深度估计相结合的新方法,通过两层Hierarchical Conditional Random Field (HCRF)进行联合推断。底层单元势能采用全局训练的CNN预测像素级深度值和语义标签;高层单元势能则基于局部区域训练的CNN得到区域级深度和语义映射。全球CNN提供粗粒度但准确的全局尺度和语义指导,而局部回归器则增加了深度和语义边界的细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

解读Towards Unified Depth and Semantic Prediction from a Single Image(2)


今天继续分析这篇论文,

这篇论文首次把语义分割和深度估计结合起来,

We propose a unified framework to incorporate both global context from the whole image and local

prediction from regions, through which the consistency between depth and semantic information is

automatically learned through joint training.


这篇论文的方法思想已经讨论了,就得看一些实质性的东西

首先来看,这个网络的框架,


来看一下作者怎么介绍的:

1, We formulate the joint inference problem in a two-layer Hierarchical Conditional Random Field

    (HCRF).

2, The unary potentials in the bottom layer are pixel-wise depth values and semantic labels,

     which are predicted by a CNN trained globally from the whole image,

     while the unary potentials in the upper layer are region-wise depth and semantic maps,

     which come from another CNN based regressors trained on local regions.

3, The output of the global CNN, through coarse, provides very accurate global scale and

     semantic guidance, while the local regressors give more details in depth and semantic

     boundaries.

4, The mutual interactions between depth and semantic information are captured through

     the joint training of the CNNs, and are further enforced in the joint inference of HCRF.

这四句话得花一些时间理解

而且,HCRF 究竟是一个什么东西呢,也必须科普一下,


在学习条件随机场的时候参考了三篇博文,

https://blog.youkuaiyun.com/a819825294/article/details/53893231

https://blog.youkuaiyun.com/u014688145/article/details/58055750

https://blog.youkuaiyun.com/DCX_abc/article/details/78319246

我在学习 PRML 的过程中接触到这部分内容,但是不太了解,还是要继续学习呀



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值