LeetCode 127. Word Ladder

本文探讨了从一个单词开始,通过一系列单字符更改到达目标单词的最短路径问题。使用广度优先搜索(BFS)算法,特别是双向BFS,以高效地找到解决方案。文章详细解释了算法的实现,并提供了具体示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given two words (beginWord and endWord), and a dictionary's word list, find the length of shortest transformation sequence from beginWord to endWord, such that:

  1. Only one letter can be changed at a time.
  2. Each transformed word must exist in the word list. Note that beginWord is not a transformed word.

Note:

  • Return 0 if there is no such transformation sequence.
  • All words have the same length.
  • All words contain only lowercase alphabetic characters.
  • You may assume no duplicates in the word list.
  • You may assume beginWord and endWord are non-empty and are not the same.

Example 1:

Input:
beginWord = "hit",
endWord = "cog",
wordList = ["hot","dot","dog","lot","log","cog"]

Output: 5

Explanation: As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog",
return its length 5.

Example 2:

Input:
beginWord = "hit"
endWord = "cog"
wordList = ["hot","dot","dog","lot","log"]

Output: 0

Explanation: The endWord "cog" is not in wordList, therefore no possible transformation.

更新于 2019/09/28

又做了一遍,发现之前没有理解到位。

首先,这个题是一个bfs搜索问题

    //bfs
    public int ladderLength(String beginWord, String endWord, List<String> word_List) {
        Set<String> wordList = new HashSet<>(word_List);
        if(!wordList.contains(endWord)) return 0;
        
        Set<String> beginSet = new HashSet<>();
        beginSet.add(beginWord);
        Set<String> seen = new HashSet<>();
        //seen.add(beginWord);//不加也行 因为beginWord不在wordList中
        int length = 1;
        while(!beginSet.isEmpty()){
     
            Set<String> newBeginSet = new HashSet<>();
            for(String s:beginSet){
                char[] array = s.toCharArray();
                for(int i = 0;i<array.length;i++){
                    char temp = array[i];
                    for(char c = 'a';c<'z';c++){
                        
                        array[i] = c;
                        String new_s = new String(array);
                        if(endWord.equals(new_s)){//注意用equals,而不是==
                            return length+1;
                        }
                        if(wordList.contains(new_s) && !seen.contains(new_s)){
                            newBeginSet.add(new_s);
                            seen.add(new_s);
                        }   
                    }
                    array[i] =  temp;
                }
            }
            
            beginSet = newBeginSet;
            length++;
            
        }
        return 0;
    }

对于bfs问题,有一种双向搜索方法,可以加速

"The idea behind bidirectional search is to run two simultaneous searches—one forward from
the initial state and the other backward from the goal—hoping that the two searches meet in
the middle. The motivation is that b^(d/2) + b^(d/2) is much less than b^d. b is branch factor, d is depth. "

----- section 3.4.6 in Artificial Intelligence - A modern approach by Stuart Russel and Peter Norvig

于是就有了下面的方法:

    //双向bfs
    public int ladderLength(String beginWord, String endWord, List<String> word_List) {
        Set<String> wordList = new HashSet<>(word_List);
        if(!wordList.contains(endWord)) return 0;
        
        Set<String> beginSet = new HashSet<>();
        beginSet.add(beginWord);
        Set<String> endSet = new HashSet<>();
        endSet.add(endWord);
        Set<String> seen = new HashSet<>();
        //seen.add(beginWord);//不加也行 因为beginWord不在wordList中
        int length = 1;
        while(!beginSet.isEmpty()){
            
            if(beginSet.size()>endSet.size()){
                Set<String> tempSet = beginSet;
                beginSet = endSet;
                endSet = tempSet;
            }

            Set<String> newBeginSet = new HashSet<>();
            for(String s:beginSet){
                char[] array = s.toCharArray();
                for(int i = 0;i<array.length;i++){
                    char temp = array[i];
                    for(char c = 'a';c<'z';c++){
                        
                        array[i] = c;
                        String new_s = new String(array);
                        if(endSet.contains(new_s)){//这里则变成了检查是否在endSet里
                            return length+1;
                        }
                        if(wordList.contains(new_s) && !seen.contains(new_s)){
                            newBeginSet.add(new_s);
                            seen.add(new_s);
                        }   
                    }
                    array[i] =  temp;
                }
            }
            
            beginSet = newBeginSet;
            length++;
            
        }
        return 0;
    }

 

 

内容概要:本文介绍了奕斯伟科技集团基于RISC-V架构开发的EAM2011芯片及其应用研究。EAM2011是一款高性能实时控制芯片,支持160MHz主频和AI算法,符合汽车电子AEC-Q100 Grade 2和ASIL-B安全标准。文章详细描述了芯片的关键特性、配套软件开发套件(SDK)和集成开发环境(IDE),以及基于该芯片的ESWINEBP3901开发板的硬件资源和接口配置。文中提供了详细的代码示例,涵盖时钟配置、GPIO控制、ADC采样、CAN通信、PWM输出及RTOS任务创建等功能实现。此外,还介绍了硬件申领流程、技术资料获取渠道及开发建议,帮助开发者高效启动基于EAM2011芯片的开发工作。 适合人群:具备嵌入式系统开发经验的研发人员,特别是对RISC-V架构感兴趣的工程师和技术爱好者。 使用场景及目标:①了解EAM2011芯片的特性和应用场景,如智能汽车、智能家居和工业控制;②掌握基于EAM2011芯片的开发板和芯片的硬件资源和接口配置;③学习如何实现基本的外设驱动,如GPIO、ADC、CAN、PWM等;④通过RTOS任务创建示例,理解多任务处理和实时系统的实现。 其他说明:开发者可以根据实际需求扩展这些基础功能。建议优先掌握《EAM2011参考手册》中的关键外设寄存器配置方法,这对底层驱动开发至关重要。同时,注意硬件申领的时效性和替代方案,确保开发工作的顺利进行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值