tensorflow 数据竞赛

本文介绍了一种基于TensorFlow的电力设备故障预测模型。该模型使用了标准化处理、特征工程和两层全连接神经网络进行训练。通过对训练数据集进行预处理并提取关键特征,模型能够准确预测电力设备的故障情况。
import pandas as pd
import sklearn.preprocessing as preprocessing

def make_data():
    col_names = ["ID","K1K2驱动信号","电子锁驱动信号","急停信号","门禁信号","THDV-M","THDI-M","label"]
    data = pd.read_csv("data_train.csv",names=col_names)
    # print(data.info())
    # print(data.describe())
    data = data.fillna(0)
    data['label2'] = data['label'].apply(lambda s: 1 - s)
    data["test1"]=data["THDI-M"]*data["THDV-M"]
    data["test2"]=data["急停信号"]*data["THDV-M"]
    data["test3"]=data["急停信号"]*data["THDV-M"]*data["THDI-M"]
    data["test4"]=data["THDI-M"]/data["THDV-M"]

    scaler=preprocessing.StandardScaler()
    lists=["K1K2驱动信号", "电子锁驱动信号", "急停信号", "门禁信号", "THDV-M", "THDI-M","test1","test2","test3"]
    for list in lists:
        data[list] = scaler.fit_transform(data[[list]])
    '''
    data["test1"] = scaler.fit_transform(data[["test1"]])
    data["test2"] = scaler.fit_transform(data[["test2"]])
    data["K1K2驱动信号"]=scaler.fit_transform(data[["K1K2驱动信号"]])
    data["电子锁驱动信号"] = scaler.fit_transform(data[["电子锁驱动信号"]])
    data["急停信号"] = scaler.fit_transform(data[["急停信号"]])
    data["门禁信号"] = scaler.fit_transform(data[["门禁信号"]])
    data["THDV-M"] = scaler.fit_transform(data[["THDV-M"]])
    data["THDI-M"] = scaler.fit_transform(data[["THDI-M"]])
    '''
    print(data)
    #print(data[["K1K2驱动信号","电子锁驱动信号","急停信号","门禁信号","THDV-M","THDI-M","label","label2"]])
    return data
def read_data():
    col_names = ["ID", "K1K2驱动信号", "电子锁驱动信号", "急停信号", "门禁信号", "THDV-M", "THDI-M",]
    data = pd.read_csv("data_test.csv", names=col_names)
   # print(data.info())
    data = data.fillna(0)
    data["test1"] = data["THDI-M"] * data["THDV-M"]
    data["test2"] = data["急停信号"] * data["THDV-M"]
    data["test3"] = data["急停信号"] * data["THDV-M"] * data["THDI-M"]
    data["test4"] = data["THDI-M"] / data["THDV-M"]
    scaler = preprocessing.StandardScaler()
    lists=["K1K2驱动信号", "电子锁驱动信号", "急停信号", "门禁信号", "THDV-M", "THDI-M","test1","test2","test3"]
    for list in lists:
        data[list] = scaler.fit_transform(data[[list]])

    '''
    data["test1"] = scaler.fit_transform(data[["test1"]])
    data["test2"] = scaler.fit_transform(data[["test2"]])
    data["K1K2驱动信号"] = scaler.fit_transform(data[["K1K2驱动信号"]])
    data["电子锁驱动信号"] = scaler.fit_transform(data[["电子锁驱动信号"]])
    data["急停信号"] = scaler.fit_transform(data[["急停信号"]])
    data["门禁信号"] = scaler.fit_transform(data[["门禁信号"]])
    data["THDV-M"] = scaler.fit_transform(data[["THDV-M"]])
    data["THDI-M"] = scaler.fit_transform(data[["THDI-M"]])
    '''
    return data[["K1K2驱动信号", "电子锁驱动信号", "急停信号", "门禁信号", "THDV-M", "THDI-M","test1","test2","test3","test4"]],data["ID"]
if __name__=="__main__":

    make_data()

import numpy as np
import pandas as pd
import tensorflow as tf
from sklearn.model_selection import train_test_split
import baidu_test
# read data from file
data = baidu_test.make_data()
# select features and labels for training
dataset_X = data[["K1K2驱动信号","电子锁驱动信号","急停信号","门禁信号","THDV-M","THDI-M","test1","test2","test3","test4"]].as_matrix()
dataset_Y = data[["label","label2"]].as_matrix()
print("--------------")
print(dataset_X)
# split training data and validation set data
X_train, X_val, y_train, y_val = train_test_split(dataset_X, dataset_Y,
                                                  test_size=0.2,
                                                  random_state=42)

# create symbolic variables
X = tf.placeholder(tf.float32, shape=[None, 10])
y = tf.placeholder(tf.float32, shape=[None, 2])


l1 = tf.layers.dense(X, 50, tf.nn.tanh, name="l1")
l2 = tf.layers.dense(l1, 20, tf.nn.tanh, name="l2")

out = tf.layers.dense(l2, 2, name="out")
y_pred = tf.nn.softmax(out, name="pred")
# weights and bias are the variables to be trained
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=y_pred))
# 训练
train_step = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(loss)
# 初始化变量
init = tf.global_variables_initializer()

# 结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_pred, 1))  # argmax返回一维张量中最大的值所在的位置
# 求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

# use session to run the calculation
with tf.Session() as sess:
    sess.run(init)
    for step in range(12000):
        sess.run(train_step, feed_dict={X: X_train, y: y_train})
        if step % 100 == 0:
            acc=sess.run(accuracy,feed_dict={X: X_val, y: y_val})
            print("acc is :"+str(acc))


    subdata,Id=baidu_test.read_data()
    #print(Id.as_matrix())
    prediction = np.argmax(sess.run(y_pred, feed_dict={X: subdata}),1)
    for i in range(len(prediction)):
        if prediction[i]==0:
            prediction[i]=1
        else:
            prediction[i]=0
    submission = pd.DataFrame({
        "ID": Id,
        "predictrion": prediction
    })
    submission.to_csv("baidu_sub2.csv",index=False)
    print("over")

import numpy as np
import pandas as pd
import tensorflow as tf
from sklearn.model_selection import train_test_split
import baidu_test
# read data from file
data = baidu_test.make_data()
# select features and labels for training
dataset_X = data[["K1K2驱动信号","电子锁驱动信号","急停信号","门禁信号","THDV-M","THDI-M","test1","test2","test3","test4"]].as_matrix()
dataset_Y = data[["label","label2"]].as_matrix()
print("--------------")
print(dataset_X)
# split training data and validation set data
X_train, X_val, y_train, y_val = train_test_split(dataset_X, dataset_Y,
                                                  test_size=0.2,
                                                  random_state=42)

# create symbolic variables
X = tf.placeholder(tf.float32, shape=[None, 10])
y = tf.placeholder(tf.float32, shape=[None, 2])


l1 = tf.layers.dense(X, 50, tf.nn.tanh, name="l1")
l2 = tf.layers.dense(l1, 20, tf.nn.tanh, name="l2")

out = tf.layers.dense(l2, 2, name="out")
y_pred = tf.nn.softmax(out, name="pred")
# weights and bias are the variables to be trained
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=y_pred))
# 训练
train_step = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(loss)
# 初始化变量
init = tf.global_variables_initializer()

# 结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_pred, 1))  # argmax返回一维张量中最大的值所在的位置
# 求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

# use session to run the calculation
with tf.Session() as sess:
    sess.run(init)
    step=0
    while True:
        step=step+1
        sess.run(train_step, feed_dict={X: X_train, y: y_train})
        if step % 100 == 0:
            acc=sess.run(accuracy,feed_dict={X: X_val, y: y_val})
            print("acc is :"+str(acc))
            if acc >0.89:
                break


    subdata,Id=baidu_test.read_data()
    #print(Id.as_matrix())
    prediction = np.argmax(sess.run(y_pred, feed_dict={X: subdata}),1)
    for i in range(len(prediction)):
        if prediction[i]==0:
            prediction[i]=1
        else:
            prediction[i]=0
    submission = pd.DataFrame({
        "ID": Id,
        "predictrion": prediction
    })
    submission.to_csv("baidu_sub2.csv",index=False)
    print("over")

2019年重庆市职业院校技能大赛高职组“云计算技术与应用”赛项竞赛样题 1. 竞赛试题通过在线“云计算技术与应用”竞赛考试系统和书面文档共同发布,内容完全一致,如出现纸质任务书缺页、字迹不清、与考试系统中不一致等问题,请及时向裁判示意,并进行任务书的更换。 2. 参赛团队应在 4 小时内完成任务书规定内容;选手在竞赛过程中各系统生成的运行记录或程序文件必须存储到在线“云计算技术与应用”竞赛考试系统指定的用户账户中,未存储到指定账户的运行记录或程序文件均不予给分。 3. 选手提交的试卷用工位号标识,不得写上姓名或与身份有关的信息,否则成绩无效。 4. 比赛过程中由于人为原因造成设备或软件损坏,这种情况不予更换。 某大型互联网公司的生产系统用户规模不断增加,每天产生海量的生产数据,这些数据既包括文本、文档、图片、视频等非结构化的数据,同时又包括生产系统和业务系统的结构化数据。为了公司生产系统安全高可用,同时能够统一存储、收集、管理、分析和挖掘这些海量数据,为实现系统弹性扩展、资源按需供给、促进信息技术和数据资源充分利用。该公司拟搭建安全的云计算平台,系统既要满足云网络、云存储和云主机的资源弹性需求,又要通过基于云平台的大数据服务实现数据的安全存储、授权访问、分析挖掘和快速检索。通过云计算Web应用及Android APP应用实现对数据的随时随地访问、存储空间的监控,通过使用提供的学习、社交、商品、娱乐、交通、股票、天气等某种大数据源和成熟的机器学习算法(ML)进行推荐、预测等大数据分析案例开发。 经公司CIO反复调研,决定选用先电云计算平台搭建云计算平台和大数据系统应用研发。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值