转载的大佬的BP神经网络 代码
原文:http://www.cnblogs.com/jzhlin/archive/2012/07/30/bp_c.html
#define Data 820
#define In 2#define Out 1
#define Neuron 45
#define TrainC 20000
#define A 0.2
#define B 0.4
#define a 0.2
#define b 0.3
double d_in[Data][In],d_out[Data][Out];
double w[Neuron][In],o[Neuron],v[Out][Neuron];
double Maxin[In],Minin[In],Maxout[Out],Minout[Out];
double OutputData[Out];
double dv[Out][Neuron],dw[Neuron][In];
double e;
Data 用来表示已经知道的数据样本的数量,也就是训练样本的数量。
In 表示对于每个样本有多少个输入变量;
Out 表示对于每个样本有多少个输出变量。
Neuron 表示神经元的数量,
TrainC 来表示训练的次数。再来我们看对神经网络描述的数据定义,来看下面这张图里面的数据类型都是 double 型。
d_in[Data][In] 存储 Data 个样本,每个样本的 In 个输入。
d_out[Data][Out] 存储 Data 个样本,每个样本的 Out 个输出。
我们用邻接表法来表示 图1 中的网络,
w[Neuron][In] 表示某个输入对某个神经元的权重,
v[Out][Neuron] 来表示某个神经元对某个输出的权重;与之对应的保存它们两个修正量的数组 dw[Neuron][In] 和 dv[Out][Neuron]。数组 o[Neuron] 记录的是神经元通过激活函数对外的输出,OutputData[Out] 存储BP神经网络的输出。
#include <stdio.h>
#include <time.h>
#include <math.h>
#include <stdlib.h>
#define Data 820
#define In 2
#define Out 1
#define Neuron 45
#define TrainC 20000
#define A 0.2
#define B 0.4
#define a 0.2
#define b 0.3
double d_in[Data][In],d_out[Data][Out];
double w[Neuron][In],o[Neuron],v[Out][Neuron];
double Maxin[In],Minin[In],Maxout[Out],Minout[Out];
double OutputData[Out];
double dv[Out][Neuron],dw[Neuron][In];
double e;
void writeTest(){ //建模
FILE *fp1,*fp2;
double r1,r2;
int i;
srand((unsigned)time(NULL));
if((fp1=fopen("D:\\in.txt","w"))==NULL){
printf("can not open the in file\n");
exit(0);
}
if((fp2=fopen("D:\\out.txt","w"))==NULL){
printf("can not open the out file\n");
exit(0);
}
for(i=0;i<Data;i++){
r1=rand()%1000/100.0;
r2=rand()%1000/100.0;
fprintf(fp1,"%lf %lf\n",r1,r2);
fprintf(fp2,"%lf \n",r1+r2);
}
fclose(fp1);
fclose(fp2);
}
void readData(){ //读取数值
FILE *fp1,*fp2;
int i,j;
if((fp1=fopen("D:\\in.txt","r"))==NULL){
printf("can not open the in file\n");
exit(0);
}
for(i=0;i<Data;i++)
for(j=0; j<In; j++)
fscanf(fp1,"%lf",&d_in[i][j]);
fclose(fp1);
if((fp2=fopen("D:\\out.txt","r"))==NULL){
printf("can not open the out file\n");
exit(0);
}
for(i=0;i<Data;i++)
for(j=0; j<Out; j++)
fscanf(fp1,"%lf",&d_out[i][j]);
fclose(fp2);
}
void initBPNework(){ //初始化神经网络
int i,j;
for(i=0; i<In; i++){
Minin[i]=Maxin[i]=d_in[0][i];
for(j=0; j<Data; j++)
{
Maxin[i]=Maxin[i]>d_in[j][i]?Maxin[i]:d_in[j][i];
Minin[i]=Minin[i]<d_in[j][i]?Minin[i]:d_in[j][i];
}
}
for(i=0; i<Out; i++){
Minout[i]=Maxout[i]=d_out[0][i];
for(j=0; j<Data; j++)
{
Maxout[i]=Maxout[i]>d_out[j][i]?Maxout[i]:d_out[j][i];
Minout[i]=Minout[i]<d_out[j][i]?Minout[i]:d_out[j][i];
}
}
for (i = 0; i < In; i++)
for(j = 0; j < Data; j++)
d_in[j][i]=(d_in[j][i]-Minin[i]+1)/(Maxin[i]-Minin[i]+1);
for (i = 0; i < Out; i++)
for(j = 0; j < Data; j++)
d_out[j][i]=(d_out[j][i]-Minout[i]+1)/(Maxout[i]-Minout[i]+1);
for (i = 0; i < Neuron; ++i)
for (j = 0; j < In; ++j){
w[i][j]=rand()*2.0/RAND_MAX-1;
dw[i][j]=0;
}
for (i = 0; i < Neuron; ++i)
for (j = 0; j < Out; ++j){
v[j][i]=rand()*2.0/RAND_MAX-1;
dv[j][i]=0;
}
}
void computO(int var){
int i,j;
double sum,y;
for (i = 0; i < Neuron; ++i){
sum=0;
for (j = 0; j < In; ++j)
sum+=w[i][j]*d_in[var][j];
o[i]=1/(1+exp(-1*sum));
}
for (i = 0; i < Out; ++i){
sum=0;
for (j = 0; j < Neuron; ++j)
sum+=v[i][j]*o[j];
OutputData[i]=sum;
}
}
void backUpdate(int var)
{
int i,j;
double t;
for (i = 0; i < Neuron; ++i)
{
t=0;
for (j = 0; j < Out; ++j){
t+=(OutputData[j]-d_out[var][j])*v[j][i];
dv[j][i]=A*dv[j][i]+B*(OutputData[j]-d_out[var][j])*o[i];
v[j][i]-=dv[j][i];
}
for (j = 0; j < In; ++j){
dw[i][j]=a*dw[i][j]+b*t*o[i]*(1-o[i])*d_in[var][j];
w[i][j]-=dw[i][j];
}
}
}
double result(double var1,double var2)
{
int i,j;
double sum,y;
var1=(var1-Minin[0]+1)/(Maxin[0]-Minin[0]+1);
var2=(var2-Minin[1]+1)/(Maxin[1]-Minin[1]+1);
for (i = 0; i < Neuron; ++i){
sum=0;
sum=w[i][0]*var1+w[i][1]*var2;
o[i]=1/(1+exp(-1*sum));
}
sum=0;
for (j = 0; j < Neuron; ++j)
sum+=v[0][j]*o[j];
return sum*(Maxout[0]-Minout[0]+1)+Minout[0]-1;
}
void writeNeuron()
{
FILE *fp1;
int i,j;
if((fp1=fopen("D:\\neuron.txt","w"))==NULL)
{
printf("can not open the neuron file\n");
exit(0);
}
for (i = 0; i < Neuron; ++i)
for (j = 0; j < In; ++j){
fprintf(fp1,"%lf ",w[i][j]);
}
fprintf(fp1,"\n\n\n\n");
for (i = 0; i < Neuron; ++i)
for (j = 0; j < Out; ++j){
fprintf(fp1,"%lf ",v[j][i]);
}
fclose(fp1);
}
void trainNetwork(){ //训练引擎
int i,c=0,j;
do{
e=0;
for (i = 0; i < Data; ++i){
computO(i);
for (j = 0; j < Out; ++j)
e+=fabs((OutputData[j]-d_out[i][j])/d_out[i][j]);
backUpdate(i);
}
printf("%d %lf\n",c,e/Data);
c++;
}while(c<TrainC && e/Data>0.01);
}
int main(int argc, char const *argv[])
{
writeTest();
readData();
initBPNework();
trainNetwork();
printf("%lf \n",result(1,1) );
printf("%lf \n",result(2,2) );
printf("%lf \n",result(4,4) );
writeNeuron();
return 0;
}