In this problem you are to calculate the sum of all integers from 1 to n, but you should take all powers of two with minus in the sum.
For example, for n = 4 the sum is equal to - 1 - 2 + 3 - 4 = - 4, because 1, 2 and 4 are 20, 21 and 22 respectively.
Calculate the answer for t values of n.
The first line of the input contains a single integer t (1 ≤ t ≤ 100) — the number of values of n to be processed.
Each of next t lines contains a single integer n (1 ≤ n ≤ 109).
Print the requested sum for each of t integers n given in the input.
2 4 1000000000
-4 499999998352516354
The answer for the first sample is explained in the statement.
题意 计算-1-2+3-4+5+6+7-8........这个公式。
解法 将所有2的次方存起来。
#include<cstdio>
long long a[40];
long long pow(int n)
{
if(n==0)
return 1;
else
{
long long k1=1;
for(int i=0;i<n;i++)
k1*=2;
return k1;
}
}
int main()
{
int t;
scanf("%d",&t);
for(int i=0;i<33;i++)
a[i]=pow(i);
while(t--)
{
long long n;
scanf("%lld",&n);
long long sum;
sum=(1+n)*n/2;
int i;
for( i=0;i<33;i++)
if(n<=a[i])
break;
if(n==a[i])
i=i+1;
long long sum1=0;
for(int j=0;j<i;j++)
sum1+=a[j];
sum=sum-sum1*2;
printf("%lld\n",sum);
}
}