e x = 1 + x + 1 2 ! x 2 + 1 3 ! x 3 + ⋯ e^{x}=1+x+\frac{1}{2 !} x^{2}+\frac{1}{3 !} x^{3}+ \cdots ex=1+x+2!1x2+3!1x3+⋯
sin x = x − 1 3 ! x 3 + 1 5 ! x 5 − ⋯ \sin x=x-\frac{1}{3 !} x^{3}+\frac{1}{5 !} x^{5}- \cdots sinx=x−3!1x3+5!1x5−⋯
cos x = 1 − 1 2 ! x 2 + 1 4 ! x 4 − ⋯ \cos x=1-\frac{1}{2 !} x^{2}+\frac{1}{4 !} x^{4}-\cdots cosx=1−2!1x2+4!1x4−⋯
将 x x x换成 i t it it,即可得到:
e i t = cos ( t ) + i sin ( t ) e^{i t}=\cos (t)+i \sin (t) eit=cos(t)+isin(t)