hdu2086

本文通过数学归纳法推导了一个特定类型的数列求和公式,并给出了一段C语言程序来验证该公式的正确性。该公式适用于一系列由初始项、末项及中间项组成的数列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include<stdio.h>
int main(){
	int n;
	double a,b,c;
	while(~scanf("%d",&n)){
		scanf("%lf%lf",&a,&b);
		double sum=0;
		for(int i=n;i>=1;i--){
			scanf("%lf",&c);
		sum+=i*c;		
		}
		sum=(n*a+b-2*sum)/(n+1);
		printf("%.2lf\n",sum);	
	}
	return 0;
}
已知A1=(A0+A2)/2 - C1, A2=(A1+A3)/2 - C2 , ...

 

=>A1+A2 = (A0+A2+A1+A3)/2 - (C1+C2)

 

=>A1+A2 = A0+A3 - 2(C1+C2) 

 

类似的有:

 

A1+A2 = A0+A3 - 2(C1+C2)

 

A1+A3 = A0+A4 - 2(C1+C2+C3)

 

A1+A4 = A0+A5 - 2(C1+C2+C3+C4)

 

...

 

A1+An = A0+An+1 - 2(C1+C2+...+Cn)

 

A1+A1 = A0+A2 - 2(C1) (本来就是)

 

----------------------------------------------------- 左右求和

 

(n+1)A1+(A2+A3+...+An) = nA0 +(A2+A3+...+An) + An+1 - 2(nC1+(n-1)C2+...+2Cn-1+Cn)

 

=> (n+1)A1=nA0 + An+1 - 2(nC1+(n-1)C2+...+2Cn-1+Cn)

 

=> A1 = [nA0 + An+1 - 2(nC1+(n-1)C2+...+2Cn-1+Cn)]/(n+1)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值