
读书笔记
文章平均质量分 93
来碗拿铁️
这个作者很懒,什么都没留下…
展开
-
多模态情绪识别调研
多模态情绪识别调研问题定义情绪 Emotion多模态 Multi-modal融合算法决策融合特征融合多模态HMM受限/深度玻尔兹曼机(Restricted/Deep Boltzmann Machine)不同设计的网络结构Dense Multimodal FusionMultimodal Transfer ModuleGATED MULTIMODAL UNITSEmotiConLate Fusion of Multimodal InformationCross-Modal Self-Attention Net原创 2021-02-01 14:08:47 · 2924 阅读 · 0 评论 -
Convex Optimization 读书笔记 (10)
Chapter11: Interior-point methods11.1 Inequality constrained minimization problemsIn this chapter we discuss interior-point methods for solving convex optimization problems that include inequality constraints,minimize f0(x)subject原创 2020-11-18 18:03:28 · 322 阅读 · 0 评论 -
Convex Optimization 读书笔记 (9)
Chapter10: Equality constrained minimization10.1 Equality constrained minimization problemsConsider a optimization problem:minimize f(x)subject to Ax=b\begin{aligned}{\rm minimize} \ \ \ \ & f(x)原创 2020-11-18 11:23:53 · 425 阅读 · 0 评论 -
Convex Optimization 读书笔记 (8)
Chapter9: Unconstrained minimization9.1 Unconstrained minimization problemsThe unconstrained optimization problem isminimize f(x)\begin{aligned}{\rm minimize} \ \ \ \ & f(x) \\\end{aligned}minimize 原创 2020-11-12 17:50:20 · 532 阅读 · 0 评论 -
Convex Optimization 读书笔记 (7)
Chapter8: Geometric problems8.1 Projection on a setThe distance of a point x0∈Rnx_0 ∈ \mathbf{R}^nx0∈Rn to a closed set C⊆RnC⊆\mathbf{R}^nC⊆Rn, in the norm ∥⋅∥∥·∥∥⋅∥, is defined asdist(x0,C)=inf{∣∣x0−x∣∣∣x∈C}{\rm \bold{dist}}(x_0,C)=\inf\{ ||x_0-x||原创 2020-11-11 14:33:37 · 601 阅读 · 0 评论 -
Convex Optimization 读书笔记 (6)
Chapter7: Statistical estimation7.1 Parametric distribution estimation7.1.1 Maximum likelihood estimationDefine log-likelihood function, and denoted l:l(x)=logpx(y)l(x)=\log p_x(y)l(x)=logpx(y)A widely used method, called maximum likelihood (ML) es原创 2020-11-08 20:17:34 · 398 阅读 · 0 评论 -
Convex Optimization 读书笔记 (5)
Chapter 6: Approximation and fitting6.1 Norm approximation6.1.1 Basic norm approximation problemThe simplest norm approximation problem is an unconstrained problem of the formminimize ∣∣Ax−b∣∣{\rm minimize} \ \ \ \ ||Ax-b||min原创 2020-11-05 21:25:24 · 512 阅读 · 0 评论 -
Convex Optimization 读书笔记 (4)
Chapter5: Duality5.1 The Lagrange dual function5.1.1 The LagrangianConsider an optimization problem in the standard formminimize f0(x)subject to fi(x)≤0,i=1,...mhi(x)=0,i=1,...p\begin{aligned}{\rm mi原创 2020-11-02 11:34:24 · 691 阅读 · 0 评论 -
Convex Optimization 读书笔记 (3)
4 Convex optimization problems4.1 Optimization problems4.1.1 Basic terminologyWe use the notationminimize f0(x)subject to fi(x)≤0,i=1,...mhi(x)=0,i=1,...p\begin{aligned}{\rm minimize} \ \ \ \ & f原创 2020-10-29 14:56:35 · 609 阅读 · 0 评论 -
Convex Optimization 读书笔记 (2)
Chapter3: Convex Functions3.1 Basic properties and examples3.1.1 DefinitionA function f:Rn→Rf:\mathbf{R}^n\rightarrow\mathbf{R}f:Rn→R is a convex function if dom f\mathbf{dom}\space fdom f is convex set and for x,y∈dom f,θ∈[0,1]x,y\in \ma原创 2020-10-27 15:52:12 · 848 阅读 · 0 评论 -
Convex Optimization 读书笔记 (1)
Chapter2 Convex Set2.1 Affine, Convex Set2.1.1 Line, Line SegmentSuppose x1,x2x_1,x_2x1,x2 are two points in Rn\mathbf{R}^nRn,y=θx1+(1−θ)x2,θ∈Ry=\theta x_1+(1-\theta)x_2,\theta\in\mathbf{R}y=θx1+(1−θ)x2,θ∈Ris a line. If θ∈[0,1]\theta\in[0,1]θ∈[0,1原创 2020-10-24 14:16:19 · 602 阅读 · 0 评论