Sloved | A | B | C | D | E | F |
---|---|---|---|---|---|---|
6/6 | O | O | O | O | Ø | Ø |
- O for passing during the contest
- Ø for passing after the contest
- ! for attempted but failed
- · for having not attempted yet
A.Tokitsukaze and Enhancement(0:05,+1)
签到题,读题找规律即可
#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=1000000007;
ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
ll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}
int n;
int main(int argc, char const *argv[])
{
ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0);
cin >> n;
int x = n % 4;
if(x == 1)
{
cout << 0 << " " << "A"<< endl;
}
if(x == 2)
{
cout << 1 << " " << "B"<< endl;
}
if(x == 3)
{
cout << 2 << " " << "A"<< endl;
}
if(x == 0)
{
cout << 1 << " " << "A"<< endl;
}
return 0;
}
B.Tokitsukaze and Mahjong(0:24,+3)
模拟,注意1m 3m 5m的情况
#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=1000000007;
ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
ll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}
string str[10];
int cnt[5][10];
int main(int argc, char const *argv[])
{
ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0);
rep(i,0,3)
{
cin >> str[i];
if(str[i][1] == 's')
{
cnt[0][str[i][0]-'0']++;
}
else if(str[i][1] == 'p')
{
cnt[1][str[i][0]-'0']++;
}
else
{
cnt[2][str[i][0]-'0']++;
}
}
int ans = 2;
//
rep(i,0,3)
{
rep(j,1,10)
{
if(cnt[i][j])
{
ans = min(ans,3-cnt[i][j]);
}
}
}
int s = 0;
rep(i,0,3)
{
s = 0;
rep(j,1,10)
{
if(cnt[i][j])
{
s+=1;
}
else
{
ans = min(ans,3-s);
s = 0;
}
}
ans = min(ans,3-s);
}
rep(i,0,3)
{
rep(j,1,8)
{
if(cnt[i][j] && cnt[i][j+2])
{
ans = min(ans,1);
}
}
}
cout << ans << endl;
return 0;
}
C.Tokitsukaze and Discard Items(00:48,+1)
直接O(n)遍历模拟即可,不要想复杂
#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=1000000007;
ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
ll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}
const int maxn = 1e5+100;
ll n,m,k;
ll p;
int main(int argc, char const *argv[])
{
ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0);
cin >> n >> m >> k;
ll ans = 0;
ll t = 0;//dz
ll s = 0;//-
ll s1 = 0;
rep(i,0,m)
{
cin >> p;
p -= s;
if((p%k == 0 && p / k == t)||(p%k != 0 && p / k + 1 == t))
{
s1++;
}
else
{
p -= s1 - s;
s = s1;
ans++;
//cout << i << "----" << endl;
if(p % k == 0)
{
t = p / k;
}
else
t = p / k + 1;
s1++;
}
}
cout << ans << endl;
return 0;
}
D.Tokitsukaze, CSL and Stone Game(01:35,+2)
考虑几种情况
- 2 2 3和1 2 2,后一种cslnb
- 计算数的个数大于2的总数,cnt >= 2,则cslnb(包括 3 3 3这种情况)
- 一些显然得到答案的方案
最后特判完,假如还没有得到结果,则最后的局面应为 0 1 2 3 … n-1,直接作差,%2判断即可
#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=1000000007;
ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
ll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}
const int maxn = 1e5 + 1000;
ll n;
ll a[maxn];
int main(int argc, char const *argv[])
{
ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0);
cin >> n;
ll sum = 0;
int zero = 0;
rep(i,0,n)
{
cin >> a[i];
if(a[i] == 0)
{
zero++;
}
sum += a[i];
}
if(sum == 0)
{
cout << "cslnb" << endl;
return 0;
}
if(zero >= 2)
{
cout << "cslnb" << endl;
return 0;
}
if(n == 1) // judge only
{
if(sum % 2 == 0)
{
cout << "cslnb"<<endl;
}
else
{
cout << "sjfnb"<<endl;
}
return 0;
}
sort(a,a+n);
int cnt = 0;
int t = 0;
int wz = 0;
rep(i,0,n)
{
if(a[i] == a[i+1])
{
cnt++;
t = a[i];
wz = i;
}
}
if(cnt >= 2)
{
cout <<"cslnb" << endl;
return 0;
}
else if(cnt == 1)
{
if(wz == 0 || a[wz-1] < t-1)
{
sum -= (0+n-1)*n/2;
if(sum % 2 == 0)
{
cout << "cslnb"<<endl;
}
else
{
cout << "sjfnb"<<endl;
}
return 0;
}
else
{
cout << "cslnb" << endl;
return 0;
}
}
else
{
sum -= (0+n-1)*n/2;
if(sum % 2 == 0)
{
cout << "cslnb"<<endl;
}
else
{
cout << "sjfnb"<<endl;
}
}
return 0;
E.Tokitsukaze and Duel
找出第一个和最后一个1,第一个和最后一个0
sjf胜利的条件很简单,zero2 - zero1 < k || one2- one1 < k
难点在qls的回合判断
现在设计一个数组a,元素为zero2 , zero1 , one2, one1,并排序
- 已知在qls的回合,qls不可能输,顶多once again
qls胜利,条件为a2-a0 <= k and a3-a1 <= k
- 已经判断了第一回合,则a1和a2不可能同是0或1,即a0和a3为0和1
- 无论sjf选择哪一段,必包括a1和a2
- 假设sjf把那一段变成1,qls可以把边缘的0到中间一段变成1,同理假设sjf把那一段变成0,qls可以把边缘的1到中间一段变成0
- 重点在于无论如何,当满足条件时,sjf无论如何操作都覆盖到了中间的0和1
假设不满足这个条件,则sjf必定可以选择一段不覆盖中间的0和1,qls只能选择once again
具体要理解清楚可能需要自己举一些例子,或者严格证明一下
#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=1000000007;
ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
ll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}
int n,k;
string str;
int one1,one2;
int zero1,zero2;
int a[10];
int main(int argc, char const *argv[])
{
cin >> n >> k;
cin >> str;
rep(i,0,n)
{
if(str[i] == '0')
{
if(zero1 == 0)
{
zero1 = i + 1;
}
zero2 = i + 1;
}
if(str[i] == '1')
{
if(one1 == 0)
{
one1 = i + 1;
}
one2 = i + 1;
}
}
if(zero2 - zero1 < k || one2 - one1 < k)
{
cout << "tokitsukaze" << endl;
return 0;
}
a[0] = zero1;
a[1] = zero2;
a[2] = one1;
a[3] = one2;
sort(a,a+4);
if(a[3] - a[1] <= k && a[2] - a[0] <= k)
{
cout << "quailty" << endl;
return 0;
}
cout << "once again" << endl;
return 0;
}
F.Tokitsukaze and Strange Rectangle
扫描线+离散化
#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=1000000007;
ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
ll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}
//树状数组
struct Bit
{
vector<int> a;
int sz;
void init(int n)
{
sz=n+5;
for(int i=1;i<=n+5;i++)
a.push_back(0);
}
int lowbit(int x)
{
return x&(-x);
}
int query(int x)
{
int ans = 0;
for(;x;x-=lowbit(x))ans+=a[x];
return ans;
}
int query(int l ,int r)
{
return query(r) - query(l-1);
}
void update(int x,int v)
{
for(;x<sz;x+=lowbit(x))
a[x]+=v;
}
}bit;
const int maxn = 2e5 + 100;
VI x[maxn],y; // lsy x, unique y
map<int,int> lsx,lsy,cntx;// id of discrete x,y , number of x
int n;
int main(int argc, char const *argv[])
{
ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0);
cin >> n;
bit.init(n);
int sum = 0;
rep(i,0,n)
{
int xx,yy;
cin >> xx >> yy;
if(!lsy.count(yy))
{
lsy[yy] = sum++;
y.pb(yy);
}
x[lsy[yy]].pb(xx);
cntx[xx]++;
}
sort(all(y));
// for(auto v : y)
// {
// sort(all(x[lsy[v]]));
// }
int s = 0;
for(auto v:cntx)
{
s++;
lsx[v.fi] = s;
bit.update(s,1);
}
ll ans = 0;
for(auto v : y)
{
sort(all(x[lsy[v]]));
int pre = 1;
for(auto u : x[lsy[v]])
{
ans += 1ll * bit.query(pre,lsx[u]) * bit.query(lsx[u],s);
//cout << pre << " "<< lsx[u] <<" " << bit.query(pre,lsx[u]) << "---" << endl;
//cout << s << " " << bit.query(lsx[u],s) << endl;
pre = lsx[u] + 1;
cntx[u]--;
if(cntx[u] == 0)
{
//cntx.erase(u);
bit.update(lsx[u],-1);
}
}
}
cout << ans << endl;
return 0;
}