一、来自链接:http://www.voidcn.com/article/p-qkxqxmdl-but.html
import matplotlib.pyplot as plt
import numpy
from sklearn.datasets import make_blobs
from sklearn.metrics import precision_recall_curve, auc
from sklearn.model_selection import KFold
from sklearn.svm import SVC
FOLDS = 5
X, y = make_blobs(n_samples=1000, n_features=2, centers=2, cluster_std=10.0,
random_state=12345)
f, axes = plt.subplots(1, 2, figsize=(10, 5))
axes[0].scatter(X[y==0,0], X[y==0,1], color='blue', s=2, label='y=0')
axes[0].scatter(X[y!=0,0], X[y!=0,1], color='red', s=2, label='y=1')
axes[0].set_xlabel('X[:,0]')
axes[0].set_ylabel('X[:,1]')
axes[0].legend(loc='lower left', fontsize='small')
k_fold = KFold(n_splits=FOLDS, shuffle=True, random_state=12345)
predictor = SVC(kernel='linear', C=1.0, probability=True, random_state=12345)
y_real = []
y_proba = []
for i, (train_index, test_index) in enumerate(k_fold.split(X)):
Xtrain, Xtest = X[train_index], X[test_index]
ytrain, ytest = y[train_index], y[test_index]
predictor.fit(Xtrain, ytrain)
pred_proba = predictor.predict_proba(Xtest)
precision, recall, _ = precision_recall_curve(ytest, pred_proba[:,1])
lab = 'Fold %d AUC=%.4f' % (i+1, auc(recall, precision))
axes[1].step(recall, precision, label=lab)
y_real.append(ytest)
y_proba.append(pred_proba[:,1])
y_real = numpy.concatenate(y_real)
y_proba = numpy.concatenate(y_proba)
precision, recall, _ = precision_recall_curve(y_real, y_proba)
lab = 'Overall AUC=%.4f' % (auc(recall, precision))
axes[1].step(recall, precision, label=lab, lw=2, color='black')
axes[1].set_xlabel('Recall')
axes[1].set_ylabel('Precision')
axes[1].legend(loc='lower left', fontsize='small')
f.tight_layout()
f.savefig('result.png')
二、来自链接:https://www.programcreek.com/python/example/89259/sklearn.metrics.precision_recall_curve
def precision_recall_auc(loss_file,reverse,smoothing):
if not os.path.isdir(loss_file):
loss_file_list = [loss_file]
else:
loss_file_list = os.listdir(loss_file)
loss_file_list = [os.path.join(loss_file, sub_loss_file) for sub_loss_file in loss_file_list]
optimal_results = RecordResult()
for sub_loss_file in loss_file_list:
dataset, scores, labels = get_scores_labels(sub_loss_file,reverse,smoothing)
precision, recall, thresholds = metrics.precision_recall_curve(labels, scores, pos_label=0)
auc = metrics.auc(recall, precision)
results = RecordResult(recall, precision, auc, dataset, sub_loss_file)
if optimal_results < results:
optimal_results = results
if os.path.isdir(loss_file):
print(results)
print('##### optimal result and model PR-AUC = {}'.format(optimal_results))
return optimal_results
三、来自链接:https://github.com/9468305/python-script/tree/master/auc_pr_roc/
'''使用real.csv和result.csv列数据,计算PR曲线的AUC值''' precision, recall, _thresholds = metrics.precision_recall_curve(label, prob) area = metrics.auc(recall, precision) return area
本文深入探讨了Python机器学习库sklearn中的PR曲线和AUPR(Area Under the Precision-Recall curve)。通过引用三个链接资源,文章提供了关于如何计算和理解这两个概念的详细说明,包括代码示例和实际应用。
769





