Hadoop-6

MapReduce数据压缩

概述:

压缩技术能够有效减少底层存储系统(HDFS)读写字节数。压缩提高了网络带宽和磁盘空间的效率。在Hadood下,尤其是数据规模很大和工作负载密集的情况下,使用数据压缩显得非常重要。在这种情况下,I/O操作和网络数据传输要花大量的时间。还有,Shuffle与Merge过程同样也面临着巨大的I/O压力。

鉴于磁盘I/O和网络带宽是Hadoop的宝贵资源,数据压缩对于节省资源、最小化磁盘I/O和网络传输非常有帮助。不过,尽管压缩与解压操作的CPU开销不高,其性能的提升和资源的节省并非没有代价。

如果磁盘I/O和网络带宽影响了MapReduce作业性能,在任意MapReduce阶段启用压缩都可以改善端到端处理时间并减少I/O和网络流量。

压缩mapreduce的一种优化策略:通过压缩编码对mapper或者reducer的输出进行压缩,以减少磁盘IO,提高MR程序运行速度(但相应增加了cpu运算负担)
注意:压缩特性运用得当能提高性能,但运用不当也可能降低性能
基本原则:
(1)运算密集型的job,少用压缩
(2)IO密集型的job,多用压缩

采用压缩的位置
压缩可以在MapReduce作用的任意阶段启用。
在这里插入图 片描述
1)输入压缩:
在有大量数据并计划重复处理的情况下,应该考虑对输入进行压缩。然而,你无须显示指定使用的编解码方式。Hadoop自动检查文件扩展名,如果扩展名能够匹配,就会用恰当的编解码方式对文件进行压缩和解压。否则,Hadoop就不会使用任何编解码器。

2)压缩mapper输出:
当map任务输出的中间数据量很大时,应考虑在此阶段采用压缩技术。这能显著改善内部数据Shuffle过程,而Shuffle过程在Hadoop处理过程中是资源消耗最多的环节。如果发现数据量大造成网络传输缓慢,应该考虑使用压缩技术。可用于压缩mapper输出的快速编解码器包括LZO、LZ4或者Snappy。

注:LZO是供Hadoop压缩数据用的通用压缩编解码器。其设计目标是达到与硬盘读取速度相当的压缩速度,因此速度是优先考虑的因素,而不是压缩率。与gzip编解码器相比,它的压缩速度是gzip的5倍,而解压速度是gzip的2倍。同一个文件用LZO压缩后比用gzip压缩后大50%,但比压缩前小25%~50%。这对改善性能非常有利,map阶段完成时间快4倍。

3)压缩reducer输出:
在此阶段启用压缩技术能够减少要存储的数据量,因此降低所需的磁盘空间。当mapreduce作业形成作业链条时,因为第二个作业的输入也已压缩,所以启用压缩同样有效。

压缩配置参数
要在Hadoop中启用压缩,可以配置如下参数(mapred-site.xml文件中):
在这里插入图片描述

计数器应用

Hadoop为每个作业维护若干内置计数器,以描述多项指标。例如,某些计数器记录已处理的字节数和记录数,使用户可监控已处理的输入数据量和已产生的输出数据量。
1)API
(1)采用枚举的方式统计计数
enum MyCounter{MALFORORMED,NORMAL}
//对枚举定义的自定义计数器加1
context.getCounter(MyCounter.MALFORORMED).increment(1);
(2)采用计数器组、计数器名称的方式统计
context.getCounter(“counterGroup”, “countera”).increment(1);
组名和计数器名称随便起,但最好有意义。
(3)计数结果在程序运行后的控制台上查看。

MapReduce与Yarn

Yarn概述
Yarn是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,而mapreduce等运算程序则相当于运行于操作系统之上的应用程序

Yarn的重要概念
1)Yarn并不清楚用户提交的程序的运行机制
2)Yarn只提供运算资源的调度(用户程序向Yarn申请资源,Yarn就负责分配资源)
3)Yarn中的主管角色叫ResourceManager
4)Yarn中具体提供运算资源的角色叫NodeManager
5)这样一来,Yarn其实就与运行的用户程序完全解耦,就意味着Yarn上可以运行各种类型的分布式运算程序(mapreduce只是其中的一种),比如mapreduce、storm程序,spark程序……
6)所以,spark、storm等运算框架都可以整合在Yarn上运行,只要他们各自的框架中有符合Yarn规范的资源请求机制即可
7)Yarn就成为一个通用的资源调度平台,从此,企业中以前存在的各种运算集群都可以整合在一个物理集群上,提高资源利用率,方便数据共享

Yarn工作机制
在这里插入图片描述
(0)Mr程序提交到客户端所在的节点
(1)yarnrunner向Resourcemanager申请一个application。
(2)rm将该应用程序的资源路径返回给yarnrunner
(3)该程序将运行所需资源提交到HDFS上
(4)程序资源提交完毕后,申请运行mrAppMaster
(5)RM将用户的请求初始化成一个task
(6)其中一个NodeManager领取到task任务。
(7)该NodeManager创建容器Container,并产生MRAppmaster
Container是一个容器,利用了linux的cgroup机制。
(8)Container从HDFS上拷贝job资源到本地
(9)MRAppmaster向RM 申请运行maptask容器
(10)RM将运行maptask任务分配给另外两个NodeManager,另两个NodeManager分别领取任务并创建容器。
(11)MR向两个接收到任务的NodeManager发送程序启动脚本,这两个NodeManager分别启动maptask,maptask对数据分区排序。
(12)MRAppmaster向RM申请2个容器,运行reduce task。
(13)reduce task向maptask获取相应分区的数据。
这里,maptask执行后会被回收,reduce task怎么管它要数据:maptask不在了,但是有文件,他们被node manager管理,可以找node manager要,node manager一个参数mapreduced_shuffle,就是配合管理这些文件。
(14)程序运行完毕后,MR会向RM注销自己。
运行时Resourcemanager和NodeManager都不知道运行信息,只有MRAppmaster知道。也可以看出yarn和他们不是耦合的。

Hadoop1.x的架构是jobtracker用来资源调度和应用的运算流程管理监控。这样耦合,jobtracker负载过大。

作业提交全过程

作业提交过程之YARN
在这里插入图片描述
作业提交过程之MapReduce
在这里插入图片描述
作业提交过程之读数据
在这里插入图片描述
作业提交过程之写数据
在这里插入图片描述

MapReduce参数优化

资源相关参数
1)以下参数是在用户自己的mr应用程序中配置就可以生效

mapreduce.map.memory.mb:一个Map Task可使用的资源上限(单位:MB),默认为1024。如果Map Task实际使用的资源量超过该值,则会被强制杀死。

mapreduce.reduce.memory.mb:一个Reduce Task可使用的资源上限(单位:MB),默认为1024。如果Reduce Task实际使用的资源量超过该值,则会被强制杀死。

mapreduce.map.java.opts:Map Task的JVM参数,你可以在此配置默认的java heap size等参数, e.g.“-Xmx1024m -verbose:gc -Xloggc:/tmp/@taskid@.gc” (@taskid@会被Hadoop框架自动换为相应的taskid), 默认值: “”

mapreduce.reduce.java.opts:Reduce Task的JVM参数,你可以在此配置默认的java heap size等参数, e.g.“-Xmx1024m -verbose:gc -Xloggc:/tmp/@taskid@.gc”, 默认值: “”

mapreduce.map.cpu.vcores:每个Map task可使用的最多cpu core数目, 默认值: 1

mapreduce.reduce.cpu.vcores:每个Reduce task可使用的最多cpu core数目, 默认值: 1

2)应该在yarn启动之前就配置在服务器的配置文件中才能生效

yarn.scheduler.minimum-allocation-mb	    1024	给应用程序container分配的最小内存
yarn.scheduler.maximum-allocation-mb	    8192	给应用程序container分配的最大内存
yarn.scheduler.minimum-allocation-vcores	1	
yarn.scheduler.maximum-allocation-vcores	32	
yarn.nodemanager.resource.memory-mb   		8192	

3)shuffle性能优化的关键参数,应在yarn启动之前就配置好

mapreduce.task.io.sort.mb   100	shuffle的环形缓冲区大小,默认100m
mapreduce.map.sort.spill.percent   0.8	环形缓冲区溢出的阈值,默认80%

容错相关参数

mapreduce.map.maxattempts:每个Map Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4。

mapreduce.reduce.maxattempts:每个Reduce Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4。

mapreduce.map.failures.maxpercent:当失败的Map Task失败比例超过该值为,整个作业则失败,默认值为0. 如果你的应用程序允许丢弃部分输入数据,则该该值设为一个大于0的值,比如5,表示如果有低于5%的Map Task失败(如果一个Map Task重试次数超过mapreduce.map.maxattempts,则认为这个Map Task失败,其对应的输入数据将不会产生任何结果),整个作业扔认为成功。

mapreduce.reduce.failures.maxpercent:当失败的Reduce Task失败比例超过该值为,整个作业则失败,默认值为0。

mapreduce.task.timeout:Task超时时间,经常需要设置的一个参数,该参数表达的意思为:如果一个task在一定时间内没有任何进入,即不会读取新的数据,也没有输出数据,则认为该task处于block状态,可能是卡住了,也许永远会卡主,为了防止因为用户程序永远block住不退出,则强制设置了一个该超时时间(单位毫秒),默认是300000。如果你的程序对每条输入数据的处理时间过长(比如会访问数据库,通过网络拉取数据等),建议将该参数调大,该参数过小常出现的错误提示是“AttemptID:attempt_14267829456721_123456_m_000224_0 Timed out after 300 secsContainer killed by the ApplicationMaster.”。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值