<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>cn.edu360.spark</groupId>
<artifactId>SparkTest</artifactId>
<version>1.0-SNAPSHOT</version>
<properties>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
<scala.version>2.11.8</scala.version>
<spark.version>2.2.0</spark.version>
<hadoop.version>2.7.3</hadoop.version>
<encoding>UTF-8</encoding>
</properties>
<dependencies>
<!-- 导入scala的依赖 -->
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<!-- 导入spark的依赖 -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<!-- 指定hadoop-client API的版本 -->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>${hadoop.version}</version>
</dependency>
<!-- mysql的连接驱动依赖 -->
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.38</version>
</dependency>
</dependencies>
<build>
<pluginManagement>
<plugins>
<!-- 编译scala的插件 -->
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.2.2</version>
</plugin>
<!-- 编译java的插件 -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.5.1</version>
</plugin>
</plugins>
</pluginManagement>
<plugins>
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<executions>
<execution>
<id>scala-compile-first</id>
<phase>process-resources</phase>
<goals>
<goal>add-source</goal>
<goal>compile</goal>
</goals>
</execution>
<execution>
<id>scala-test-compile</id>
<phase>process-test-resources</phase>
<goals>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<executions>
<execution>
<phase>compile</phase>
<goals>
<goal>compile</goal>
</goals>
</execution>
</executions>
</plugin>
<!-- 打jar插件 -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>2.4.3</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<filters>
<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
工具类:
package cn.edu360.day4
import java.sql.{Connection, DriverManager, PreparedStatement}
import scala.io.{BufferedSource, Source}
/**
* Created by lisheng on 2018/9/9.
*/
object MyUtils {
def ip2Long(ip: String): Long = {
val fragments = ip.split("[.]")
var ipNum = 0L
for (i <- 0 until fragments.length){
ipNum = fragments(i).toLong | ipNum << 8L
}
ipNum
}
def readRules(path: String): Array[(Long, Long, String)] = {
//读取ip规则
val bf: BufferedSource = Source.fromFile(path)
val lines: Iterator[String] = bf.getLines()
//对ip规则进行整理,并放入到内存
val rules: Array[(Long, Long, String)] = lines.map(line => {
val fileds = line.split("[|]")
val startNum = fileds(2).toLong
val endNum = fileds(3).toLong
val province = fileds(6)
(startNum, endNum, province)
}).toArray
rules
}
def binarySearch(lines: Array[(Long, Long, String)], ip: Long) : Int = {
var low = 0
var high = lines.length - 1
while (low <= high) {
val middle = (low + high) / 2
if ((ip >= lines(middle)._1) && (ip <= lines(middle)._2))
return middle
if (ip < lines(middle)._1)
high = middle - 1
else {
low = middle + 1
}
}
-1
}
def data2MySQL(it: Iterator[(String, Int)]): Unit = {
//一个迭代器代表一个分区,分区中有多条数据
//先获得一个JDBC连接
val conn: Connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/bigdata?characterEncoding=UTF-8", "root", "123568")
//将数据通过Connection写入到数据库
val pstm: PreparedStatement = conn.prepareStatement("INSERT INTO access_log VALUES (?, ?)")
//将分区中的数据一条一条写入到MySQL中
it.foreach(tp => {
pstm.setString(1, tp._1)
pstm.setInt(2, tp._2)
pstm.executeUpdate()
})
//将分区中的数据全部写完之后,在关闭连接
if(pstm != null) {
pstm.close()
}
if (conn != null) {
conn.close()
}
}
def main(args: Array[String]): Unit = {
//数据是在内存中
val rules: Array[(Long, Long, String)] = readRules("/Users/zx/Desktop/ip/ip.txt")
//将ip地址转换成十进制
val ipNum = ip2Long("114.215.43.42")
//查找
val index = binarySearch(rules, ipNum)
//根据脚本到rules中查找对应的数据
val tp = rules(index)
val province = tp._3
println(province)
}
}
实现
package cn.edu360.day4
import java.sql.{Connection, DriverManager, PreparedStatement}
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
/**
* Created by lisheng on 2018/9/9.
*/
object IpLoaction2 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("IpLoaction1").setMaster("local[4]")
val sc = new SparkContext(conf)
//取到HDFS中的ip规则
val rulesLines:RDD[String] = sc.textFile(args(0))
//整理ip规则数据
val ipRulesRDD: RDD[(Long, Long, String)] = rulesLines.map(line => {
val fields = line.split("[|]")
val startNum = fields(2).toLong
val endNum = fields(3).toLong
val province = fields(6)
(startNum, endNum, province)
})
//将分散在多个Executor中的部分IP规则收集到Driver端
val rulesInDriver: Array[(Long, Long, String)] = ipRulesRDD.collect()
//将Driver端的数据广播到Executor
//广播变量的引用(还在Driver端)
val broadcastRef: Broadcast[Array[(Long, Long, String)]] = sc.broadcast(rulesInDriver)
//创建RDD,读取访问日志
val accessLines: RDD[String] = sc.textFile(args(1))
//整理数据
val proviceAndOne: RDD[(String, Int)] = accessLines.map(log => {
//将log日志的每一行进行切分
val fields = log.split("[|]")
val ip = fields(1)
//将ip转换成十进制
val ipNum = MyUtils.ip2Long(ip)
//进行二分法查找,通过Driver端的引用或取到Executor中的广播变量
//(该函数中的代码是在Executor中别调用执行的,通过广播变量的引用,就可以拿到当前Executor中的广播的规则了)
//Driver端广播变量的引用是怎样跑到Executor中的呢?
//Task是在Driver端生成的,广播变量的引用是伴随着Task被发送到Executor中的
val rulesInExecutor: Array[(Long, Long, String)] = broadcastRef.value
//查找
var province = "未知"
val index = MyUtils.binarySearch(rulesInExecutor, ipNum)
if (index != -1) {
province = rulesInExecutor(index)._3
}
(province, 1)
})
//聚合
//val sum = (x: Int, y: Int) => x + y
val reduced: RDD[(String, Int)] = proviceAndOne.reduceByKey(_+_)
//将结果打印
//val r = reduced.collect()
//println(r.toBuffer)
/**
reduced.foreach(tp => {
//将数据写入到MySQL中
//问?在哪一端获取到MySQL的链接的?
//是在Executor中的Task获取的JDBC连接
val conn: Connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/bigdata?charatorEncoding=utf-8", "root", "123568")
//写入大量数据的时候,有没有问题?
val pstm = conn.prepareStatement("...")
pstm.setString(1, tp._1)
pstm.setInt(2, tp._2)
pstm.executeUpdate()
pstm.close()
conn.close()
})
*/
//一次拿出一个分区(一个分区用一个连接,可以将一个分区中的多条数据写完在释放jdbc连接,这样更节省资源)
// reduced.foreachPartition(it => {
// val conn: Connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/bigdata?characterEncoding=UTF-8", "root", "123568")
// //将数据通过Connection写入到数据库
// val pstm: PreparedStatement = conn.prepareStatement("INSERT INTO access_log VALUES (?, ?)")
// //将一个分区中的每一条数据拿出来
// it.foreach(tp => {
// pstm.setString(1, tp._1)
// pstm.setInt(2, tp._2)
// pstm.executeUpdate()
// })
// pstm.close()
// conn.close()
// })
reduced.foreachPartition(it => MyUtils.data2MySQL(it))
sc.stop()
}
}