KMP详解
A - Number Sequence
Description
Given two sequences of numbers : a[1], a[2], … , a[N], and b[1], b[2], … , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], … , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.
Input
The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], … , a[N]. The third line contains M integers which indicate b[1], b[2], … , b[M]. All integers are in the range of [-1000000, 1000000].
Output
For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
Sample Input
2
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 1 3
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 2 1
Sample Output
6
-1
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <queue>
#include <set>
#include <map>
#define PI acos(-1)
const int mod = 1001113;
const int maxx = 1e6 + 10;
typedef long long LL;
using namespace std;
LL a[2000010],b[2000010],nex[2000010],i,j;
LL n,m,k;
int kmp()
{
i=0;
j=0;
while(i<m&&j<n)
{
if(j==-1 || a[i]==b[j])
{
i++;
j++;
}
else
j=nex[j];
}
if(j==n)
return i-j+1;
else
return -1;
}
void next()
{
i=0,j=-1;
nex[0]=-1;
while(i<n)
{
if(j==-1||b[i]==b[j])
nex[++i]=++j;
else
j=nex[j];
}
}
int main()
{
LL t;
cin>>t;
while(t--)
{
cin>>m>>n;
for(LL i=0;i<m;i++)
cin>>a[i];
for(LL i=0;i<n;i++)
cin>>b[i];
next();
k=kmp();
cout<<k<<endl;
}
return 0;
}