枚举系列 分数拆分 java版

本文介绍了一种利用枚举法解决特定分数方程的方法,并提供了完整的Java实现代码。该方法适用于寻找所有符合条件的正整数x和y,使得1/k=1/x+1/y成立。

看题:
输入正整数k,找到所有的正整数x≥y,使得1/k=1/x+1/y
样例输入:
2
12
样例输出:
2
1/2=1/6+1/3
1/2=1/4+1/4
8
1/12=1/156+1/13
1/12=1/84+1/14
1/12=1/60+1/15
1/12=1/48+1/16
1/12=1/36+1/18
1/12=1/30+1/20
1/12=1/28+1/21
1/12=1/24+1/24


分析一下题:
通过题目可以看出:找出所有有x,y,枚举完成了就行了!!!
哈哈,纯纯的枚举,即简单又暴力!!!
注意!!!
细节来了:
1/12=1/156+1/13 可以看出,x可以比y大很多。
推导———
因为:x≥y
所以:1/x≤1/y
因此 : 1/k-1/y≤1/y
即可推出:y≤2k。
这样,只需要在2k范围内枚举y,然后根据y尝试计算出x即可
计算x的步骤:
1/k=1/x+1/y
1/x=1/k-1/y
右边通分化简得
x=(k * y) / (y - k);


直接上代码:

import java.util.Scanner;
class Main {
    public static void main(String[] args) {
         int x, y;//变量count统计等式的个数
         Scanner sc = new Scanner(System.in);
         while(sc.hasNext()) {
             int k = sc.nextInt();
             int count = 0;
             for(y = k+1;y <= 2 * k; y++){ //判断1/k=1/x+1/y等式的个数
                 x=(k * y) / (y - k);   //注意!!!求解x公式    
                 if(x * (y-k) == k * y){
                     System.out.printf("1/%d=1/%d+1/%d\n",k,x,y);
                     count++;
                 }
             }
             System.out.printf("%d\n",count);//输出满足条件的等式的个数
          }
    }
}

运行结果如图所示:
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小鹏AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值