基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN
object detection我的理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别。object detection要解决的问题就是物体在哪里,是什么这整个流程的问题。然而,这个问题可不是那么容易解决的,物体的尺寸变化范围很大,摆放物体的角度,姿态不定,而且可以出现在图片的任何地方,更何况物体还可以是多个类别。
object detection技术的演进:
RCNN->SppNET->Fast-RCNN->Faster-RCNN
从图像识别的任务说起
这里有一个图像任务:
既要把图中的物体识别出来,又要用方框框出它的位置。

上面的任务用专业的说法就是:图像识别+定位
图像识别(classification):
输入:图片
输出:物体的类别
评估方法:准确率

定位(localization):
输入:图片
输出:方框在图片中的位置(x,y,w,h)
评估方
本文介绍了基于深度学习的目标检测技术发展,从R-CNN、SPP-Net到Fast R-CNN和Faster R-CNN,探讨了如何解决定位和分类问题,以及各方法的优缺点和速度提升。
订阅专栏 解锁全文
2986

被折叠的 条评论
为什么被折叠?



