一、代码及注释
# 1.预处理阶段
import os
import numpy as np
import math
import torch
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
import torchvision
from torchvision import datasets
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter()
cuda = True if torch.cuda.is_available() else False
os.makedirs("image", exist_ok=True) # 如果已经存在该目录则不报错
n_epochs = 200
batch_size = 64
lr = 2e-4
img_size = 28
channels = 1
z_dim = 100
sample_interval = 1000
img_shape = (channels,img_size, img_size)
# print(*img_shape) 1 28 28
os.makedirs("./data/mnist", exist_ok=True)
transform = transforms.Compose([transforms.Resize(img_size),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])])
trainset = datasets.MNIST(root='./data/mnist', train=True,
download = True,transform = transform)
dataloader = DataLoader(trainset, batch_size=batch_size, shuffle = True, num_workers=16)
# 2.搭建网络
class Generator(nn.Module):
def __init__(self):
super(Generator,self).__init__()
def block(in_feat, out_feat, normalize = True):
layers = [nn.Linear(in_feat, out_feat)]
if normalize:
layers.append(nn.BatchNorm1d(out_feat,0.8)) # 1D是因为数字图是1channel,momentum:计算running_mean和running_var的滑动平均系数。
layers.append(nn.LeakyReLU(0.2, inplace = True)) #否将得到的值计算得到的值覆盖之前的值,从上层网络Conv2d中传递下来的tensor直接进行修改,这样能够节省运算内存,不用多存储其他变量
return layers
self.model = nn.Sequential(
*block(z_dim, 128, normalize = False), # 第一层不用batch normal
*block(128,256),
*block(256,512),
*block(512, 1024),
nn.Linear(1024, int(np.prod(img_shape))),
nn.Tanh()
)
def forward(self, z):
img = self.model(z)
img = img.view(img.size(0),*img_shape)
return img
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator,self).__init__()
self.model = nn.Sequential(
nn.Linear(int(np.prod(img_shape)),512),
nn.LeakyReLU(0.2, inplace = True),
nn.Linear(512,256),
nn.LeakyReLU(0.2, inplace = True),
nn.Linear(256, 1),
nn.Sigmoid(),
)
def forward(self, img):
img_flat = img.view(img.size(0), -1) # img.size(0) 为批处理数
validity = self.model(img_flat)
return validity
generator = Generator()
discriminator = Discriminator()
# 3.定义损失函数和优化
adverial_loss = nn.BCELoss()
optimizer_G = torch.optim.Adam(generator.parameters(),lr = lr, betas =(0.9,0.999))
optimizer_D = torch.optim.Adam(discriminator.parameters(),lr = lr, betas =(0.9,0.999))
if cuda:
generator.cuda()
discriminator.cuda()
adverial_loss.cuda()
# 4.训练网络
# 怎么实现固定一个,更新另一个? 通过optimizer_G.step(),optimizer_D.step()确定更新哪个模型参数
# https://zhuanlan.zhihu.com/p/43843694
Tensor = torch.cuda.FloatTensor if cuda else torch.cuda.FloatTensor
for epoch in range(n_epochs):
for i,(imgs,_) in enumerate(dataloader): #标签123456不要了imgs:torch.Size([64, 1, 28, 28])
valid = Variable(Tensor(imgs.size(0),1).fill_(1.0),requires_grad=False) # _表示Inplace
fake = Variable(Tensor(imgs.size(0),1).fill_(0.0),requires_grad=False)
real_imgs = Variable(imgs.type(Tensor))
z = Variable(Tensor(np.random.normal(0,1,(imgs.shape[0],z_dim))))
# 训练生成器
optimizer_G.zero_grad()
gen_imgs = generator(z)
g_loss = adverial_loss(discriminator(gen_imgs),valid)
# (64,1)?求了平均值 https://blog.youkuaiyun.com/qq_22210253/article/details/85222093
g_loss.backward()
optimizer_G.step() # 一个mini-batch更新一次参数
# 训练鉴别器
optimizer_D.zero_grad()
real_loss = adverial_loss(discriminator(real_imgs), valid)
fake_loss = adverial_loss(discriminator(gen_imgs.detach()), fake)
d_loss = (real_loss + fake_loss) / 2
d_loss.backward()
optimizer_D.step()
# item是得到一个元素张量里面的元素值
# print("[Epoch %d/%d][Batch %d/%d][D_loss:%f][G_loss:%f]"
# %(epoch, n_epochs, i, len(dataloader) ,d_loss.item(), g_loss.item()))
writer.add_scalar('g_loss', g_loss.item(), epoch*len(dataloader) + i)
writer.add_scalar('d_loss', d_loss.item(), epoch*len(dataloader) + i)
writer.flush()
# tensorboard --logdir=/home/workstation/lyx_code/first_gan/runs/Jan21_21-15-39_ubuntu-18-04
# 5. 保存生成图片
batches_done = epoch*len(dataloader) + i
if batches_done % sample_interval == 0:
save_image(gen_imgs.data[:25], "image/%d.png" % (batches_done / sample_interval), nrow=5, normalize=True)
二、训练结果
训练不稳定情况: