以torchvision中mobilenet_v3_large模型为例
import torch
import onnx
import numpy as np
import torch.nn as nn
import onnxruntime as ort
from torchvision.models import *
torch_model = torch.load("***.pth") # pytorch模型加载
model = mobilenet_v3_large(pretrained=True)
num_ftrs = model.classifier[3].in_features
model.classifier[3] = nn.Linear(num_ftrs, 7) # 类别数量
model.load_state_dict(torch_model)
dummy_input = torch.ones(1, 3, 112, 112) # 输入图像大小
#测试pt模型
model.eval()
outputs = model(dummy_input)
print("pt_out:",outputs[0])
export_onnx_file = "0423***.onnx" # 目的ONNX文件名
torch.onnx.export(model.eval(), dummy_input, export_onnx_file, verbose=False, input_names=["input"], output_names=["output"], opset_version=10)
print("======================== convert onnx Finished! .... ")
try:
import onnxsim
onnx_model = onnx.load(export_onnx_file)
print('\nStarting to simplify ONNX...')
sim_onnx_model, check = onnxsim.simplify(onnx_model)
assert check, 'assert check failed'
except Exception as e:
print(f'Simplifier failure: {e}')
onnx.save(sim_onnx_model,export_onnx_file)
print("Success to Simplify !!!")
#测试onnx
input_onnx = dummy_input.numpy().astype(np.float32)
ort_session = ort.InferenceSession('./0423***.onnx')
outs = (ort_session.run(None, {'input': input_onnx}))
print("onnx_out:",outs[0][0])