python画混淆矩阵

# confusion_matrix
import numpy as np
import matplotlib.pyplot as plt


classes = ['0','1','2','3','4','5','6','7','8','9']
confusion_matrix = np.array([(150,0,0,0,0,0,0,0,0,0),
                             (0,150,0,0,0,0,0,0,0,0),
                             (0,0,150,0,0,0,0,0,0,0),
                             (1,0,0,149,0,0,0,0,0,0),
                             (1,0,0,0,146,0,0,3,0,0),
                             (0,0,0,0,0,150,0,0,0,0),
                             (0,0,1,0,0,0,149,0,0,0),
                             (0,0,0,0,3,0,0,147,0,0),
                             (1,0,1,0,1,0,1,0,146,0),
                             (0,2,0,0,0,0,0,0,0,148)])
classNamber = 10;

plt.imshow(confusion_matrix, interpolation='nearest', cmap=plt.cm.Oranges)  #按照像素显示出矩阵
plt.title('confusion_matrix')
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=-45)
plt.yticks(tick_marks, classes)

thresh = confusion_matrix.max() / 2.
#iters = [[i,j] for i in range(len(classes)) for j in range((classes))]
#ij配对,遍历矩阵迭代器
iters = np.reshape([[[i,j] for j in range(classNamber)] for i in range(classNamber)],(confusion_matrix.size,2))
for i, j in iters:
    plt.text(j, i, format(confusion_matrix[i, j]),va='center',ha='center')   #显示对应的数字

plt.ylabel('Real label')
plt.xlabel('Prediction')
plt.tight_layout()
plt.show()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

懒惰的coder

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值