Arc of Dream
Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 5477 Accepted Submission(s): 1701
Problem Description
An Arc of Dream is a curve defined by following function:
where
a 0 = A0
a i = a i-1*AX+AY
b 0 = B0
b i = b i-1*BX+BY
What is the value of AoD(N) modulo 1,000,000,007?

where
a 0 = A0
a i = a i-1*AX+AY
b 0 = B0
b i = b i-1*BX+BY
What is the value of AoD(N) modulo 1,000,000,007?
Input
There are multiple test cases. Process to the End of File.
Each test case contains 7 nonnegative integers as follows:
N
A0 AX AY
B0 BX BY
N is no more than 10 18, and all the other integers are no more than 2×10 9.
Each test case contains 7 nonnegative integers as follows:
N
A0 AX AY
B0 BX BY
N is no more than 10 18, and all the other integers are no more than 2×10 9.
Output
For each test case, output AoD(N) modulo 1,000,000,007.
Sample Input
1 1 2 3 4 5 6 2 1 2 3 4 5 6 3 1 2 3 4 5 6
Sample Output
4 134 1902
Author
Zejun Wu (watashi)
Source
Recommend
zhuyuanchen520 | We have carefully selected several similar problems for you:
6229
6228
6227
6226
6225
题意很容易理解
计算An,Bn可以用矩阵快速幂,但是计算An*Bn不好直接用矩阵快速幂
先计算一下A1*B1
A1*B1=(A0*Ax+Ay)*(B0*Bx+By)=A0*B0*Bx*Ax+A0*Ax*By+B0*Bx*Ay+Ay*By;
根据这个就可以构造矩阵:
Ax 0 0 0 Ay A0
0 Bx 0 0 By B0
Ax*By Bx*Ay Ax*Bx 0 Ay*By X A0*B0
0 0 1 1 0 0
0 0 0 0 1 1
#pragma comment(linker,"/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<stack>
#include<queue>
#include<deque>
#include<set>
#include<map>
#include<cmath>
#include<vector>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
#define pi acos(-1.0)
#define eps 1e-10
#define pf printf
#define sf scanf
#define lson rt<<1,l,mi
#define rson rt<<1|1,mi+1,r
#define root 1,1,n
#define et tree[rt]
#define _s second
#define _f first
#define all(x) (x).begin,(x).end
#define mem(i,a) memset(i,a,sizeof i)
#define for0(i,a) for(int (i)=0;(i)<(a);(i)++)
#define for1(i,a) for(int (i)=1;(i)<=(a);(i)++)
#define mi ((l+r)>>1)
#define sqr(x) ((x)*(x))
const int inf=0x3f3f3f3f;
const int mod=1e9+7;
ll n,a0,b0,a1,a2,b1,b2,a,b,c,d,ans[6][6],p[6][6],e;
void multi(ll a[][6],ll b[][6])
{
ll c[6][6];
mem(c,0);
for1(i,5)
for1(j,5)
for1(k,5)
c[i][j]=(c[i][j]+a[i][k]*b[k][j])%mod;
for1(i,5)
for1(j,5)
a[i][j]=c[i][j];
}
void init()
{
mem(ans,0);
for1(i,5)ans[i][i]=1;
mem(p,0);
p[1][1]=a1,p[1][5]=a2,p[2][2]=b1,p[2][5]=b2;
p[3][1]=a,p[3][2]=b,p[3][3]=c,p[3][5]=d;
p[4][3]=p[4][4]=p[5][5]=1;
}
void quick(ll x)
{
while(x)
{
if(x&1)multi(ans,p);
x>>=1;
multi(p,p);
}
}
int main()
{
while(~sf("%I64d",&n))
{
sf("%I64d%I64d%I64d",&a0,&a1,&a2);
sf("%I64d%I64d%I64d",&b0,&b1,&b2);
a=a1*b2%mod;
b=b1*a2%mod;
c=a1*b1%mod;
d=a2*b2%mod;
e=a0*b0%mod;
init();
quick(n);
ll o=(ans[4][1]*a0%mod+ans[4][2]*b0%mod+ans[4][3]*e%mod+ans[4][5])%mod;
pf("%I64d\n",o);
}
return 0;
}