HDU 6185 Covering

Covering

Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 617    Accepted Submission(s): 271


Problem Description
Bob's school has a big playground, boys and girls always play games here after school.

To protect boys and girls from getting hurt when playing happily on the playground, rich boy Bob decided to cover the playground using his carpets.

Meanwhile, Bob is a mean boy, so he acquired that his carpets can not overlap one cell twice or more.

He has infinite carpets with sizes of  1×2  and  2×1 , and the size of the playground is  4×n .

Can you tell Bob the total number of schemes where the carpets can cover the playground completely without overlapping?
 

Input
There are no more than 5000 test cases. 

Each test case only contains one positive integer n in a line.

1n1018
 

Output
For each test cases, output the answer mod 1000000007 in a line.
 

Sample Input
  
  
1 2
 

Sample Output
  
  
1 5
 

Source
 

Recommend
liuyiding


题意:给一个4*n的矩形,用1*2的矩阵填满,问能有多少种填法

解题思路:把4当作列数,n当作行数。当第n行填满时,第(n+1)行会出现以下几种情况:


情况a为第n行刚好填满且没有突出到第(n + 1)行,即为所求答案,由图不难推出:
a[n] = a[n - 1] + b[n - 1] + c[n - 1] + dx[n - 1] + dy[n - 1]
b[n] = a[n - 1]
c[n] = a[n - 1] + e[n - 1]
dx[n] = a[n - 1] + dy[n - 1]
dy[n] = a[n - 1] + dx[n - 1]
e[n] = c[n - 1]
令d[n] = dx[n] + dy[n]
则 a[n] = a[n - 1] + b[n - 1] + c[n - 1] + d[n - 1]
b[n] = a[n - 1]
c[n] = a[n - 1] + e[n - 1]
d[n] = a[n - 1] * 2 + d[n - 1]
e[n] = c[n - 1]

根据这个构造出矩阵即可


推公式自己不是很擅长,这个过程是我盗的,原文链接为:http://blog.youkuaiyun.com/a664607530/article/details/77619554

最后能推出的公式为 f[n]=f[n-1]+5*f[n-2]+f[n-3]-f[n-4]

根据这一公式能推出需要构造的矩阵为:

1   5   1   -1                               f[4]

1   0   0    0             *                 f[3]

0   1   0    0                               f[2]

0   0   1    0                               f[1]

f[4]=36,f[3]=11,f[2]=5,f[1]=1


#pragma comment(linker,"/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<stack>
#include<queue>
#include<deque>
#include<set>
#include<map>
#include<cmath>
#include<vector>

using namespace std;

typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;

#define pi acos(-1.0)
#define eps 1e-10
#define pf printf
#define sf scanf
#define lson rt<<1,l,m
#define rson rt<<1|1,m+1,r
#define e tree[rt]
#define _s second
#define _f first
#define all(x) (x).begin,(x).end
#define mem(i,a) memset(i,a,sizeof i)
#define for0(i,a) for(int (i)=0;(i)<(a);(i)++)
#define for1(i,a) for(int (i)=1;(i)<=(a);(i)++)
#define mi ((l+r)>>1)
#define sqr(x) ((x)*(x))

const int inf=0x3f3f3f3f;
const int mod=1e9+7;
ll n,p[5][5],ans[5][5],a[5]={0,1,5,11,36};

void multi(ll a[][5],ll b[][5])
{
    ll tmp[5][5];
    mem(tmp,0);
    for1(i,4)
        for1(j,4)
            for1(k,4)
                tmp[i][j]=(tmp[i][j]+a[i][k]*b[k][j])%mod;
    for1(i,4)
        for1(j,4)
            a[i][j]=tmp[i][j];
}

void init()
{
    mem(ans,0);
    for1(i,4)ans[i][i]=1;
    mem(p,0);
    p[1][1]=p[1][3]=p[2][1]=p[3][2]=p[4][3]=1;
    p[1][2]=5,p[1][4]=-1;
}

void quick_pow(ll x)
{
    while(x)
    {
        if(x&1)multi(ans,p);
        multi(p,p);
        x>>=1;
    }
}

int main()
{
    while(~sf("%I64d",&n))
    {
        if(n<=4)//n小于4时直接输出f[n]
        {
            pf("%I64d\n",a[n]);
            continue;
        }
        init();//矩阵初始化
        quick_pow(n-4);
        ll sum=(ans[1][1]*a[4]%mod+ans[1][2]*a[3]%mod+ans[1][3]*a[2]%mod+ans[1][4]*a[1]%mod)%mod;
        sum=(sum+mod)%mod;//防止最后得到的sum<0
        pf("%I64d\n",sum);
    }
    return 0;
}


为了在Windows安装ADB工具,你可以按照以下步骤进行操作: 1. 首先,下载ADB工具包并解压缩到你自定义的安装目录。你可以选择将其解压缩到任何你喜欢的位置。 2. 打开运行窗口,可以通过按下Win+R键来快速打开。在运行窗口中输入"sysdm.cpl"并按下回车键。 3. 在系统属性窗口中,选择"高级"选项卡,然后点击"环境变量"按钮。 4. 在环境变量窗口中,选择"系统变量"部分,并找到名为"Path"的变量。点击"编辑"按钮。 5. 在编辑环境变量窗口中,点击"新建"按钮,并将ADB工具的安装路径添加到新建的路径中。确保路径正确无误后,点击"确定"按钮。 6. 返回到桌面,打开命令提示符窗口。你可以通过按下Win+R键,然后输入"cmd"并按下回车键来快速打开命令提示符窗口。 7. 在命令提示符窗口中,输入"adb version"命令来验证ADB工具是否成功安装。如果显示版本信息,则表示安装成功。 这样,你就成功在Windows安装ADB工具。你可以使用ADB工具来执行各种操作,如枚举设备、进入/退出ADB终端、文件传输、运行命令、查看系统日志等。具体的操作方法可以参考ADB工具的官方文档或其他相关教程。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* [windows环境安装adb驱动](https://blog.youkuaiyun.com/zx54633089/article/details/128533343)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [Windows安装使用ADB简单易懂教程](https://blog.youkuaiyun.com/m0_37777700/article/details/129836351)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值