#找出数组中与给定值最接近的数
z = np.array([[0,1,2,3],[4,5,6,7]])print(z)
a =5.1
b=np.abs(z-a)print(b)print(np.argmin(b,axis=1))print("---")print(np.argmin(b,axis=0))
Help on built-in function randint:
randint(...)
randint(low, high=None, size=None)
Return random integers from `low` (inclusive) to `high` (exclusive).
Return random integers from the "discrete uniform" distribution in the
"half-open" interval [`low`, `high`). If `high` is None (the default),
then results are from [0, `low`).
Parameters
----------
low : int
Lowest (signed) integer to be drawn from the distribution (unless
``high=None``, in which case this parameter is the *highest* such
integer).
high : int, optional
If provided, one above the largest (signed) integer to be drawn
from the distribution (see above for behavior if ``high=None``).
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. Default is None, in which case a
single value is returned.
Returns
-------
out : int or ndarray of ints
`size`-shaped array of random integers from the appropriate
distribution, or a single such random int if `size` not provided.
See Also
--------
random.random_integers : similar to `randint`, only for the closed
interval [`low`, `high`], and 1 is the lowest value if `high` is
omitted. In particular, this other one is the one to use to generate
uniformly distributed discrete non-integers.
Examples
--------
>>> np.random.randint(2, size=10)
array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])
>>> np.random.randint(1, size=10)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
Generate a 2 x 4 array of ints between 0 and 4, inclusive:
>>> np.random.randint(5, size=(2, 4))
array([[4, 0, 2, 1],
[3, 2, 2, 0]])
x,y = np.meshgrid(np.linspace(-1,1,10),np.linspace(-2,2,10))print(x)print(30*"@")print(y)print(30*"@")
D = np.sqrt(x**2+y**2)print(D)print(30*"@")
sigma,mu =1,0
a = np.exp(-(D-mu)**2/(2*sigma**2))print(a)