Number Sequence
Problem Description
Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.
Input
The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].
Output
For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
Sample Input
2
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 1 3
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 2 1
Sample Output
6
-1
#include<cstdio>///HDU1711-Number Sequence
using namespace std;
int a[1000005],b[10005],next[10005];
int n,m;
int getnext()
{
int j=1,k=0;
next[1]=0;
while(j<=m)
{
if(k==0||b[j]==b[k])
{
j++;k++;
next[j]=k;
}
else
k=next[k];
}
}
int kmp()
{
getnext();
int i=1,j=1;
while(i<=n)
{
if(j==0||a[i]==b[j])
{
i++;
j++;
}
else
j=next[j];
if(j==m+1)
{
return i-m;
}
}
return -1;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
}
for(int j=1;j<=m;j++)
{
scanf("%d",&b[j]);
}
printf("%d\n",kmp());
}
return 0;
}