什么是Hive

本文深入探讨Hive作为建立在Hadoop上的数据仓库基础架构的角色,解析其如何通过类似SQL的查询语言处理大规模数据,以及与传统数据库的区别。介绍了Hive的架构原理,包括用户接口、元数据存储、Hadoop集成及驱动器组件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. hive是建立在Hadoop上的数据仓库基础架构。它提供了一系列的工具,可以用来进行数据提取转换加载(ETL),这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。hive定义了简单的类似于SQL的查询语言称为QL,它允许熟悉SQL的用户查询数据。同时这种语言也允许熟悉MapReduce的开发者进行开发自定义的mapper和reducer来处理内建的mapper和reducer无法完成的负载的分析工作。
2.  Hive是SQL的解析引擎,它将SQL语句转成M/R job 然后在Hadoop执行。
3 .  Hive的表其实就是HDFS目录/文件,按照表名将将文件夹分开。如果是分区表,则分区值是子文件夹,可以直接在M/R job里使用这些数据。

(二)  数据库和数据仓库的区别

数据仓库和数据库的区别:数据仓库主要用来保存数据,对保存的数据进行分析计算。一次写入,多次读取。不能删除单条数据,除非将整个文件删除。修改数据时只有将整个文件下载下来,修改之后重写上传。

Hive的主要功能可以将一条语句转换为MapReduce,Hive依赖于HDFS和Yarn
注意:HBASE数据库适用于结构简单,表与表之间没有密切联系的业务需求。关系型数据库适用于业务复杂表与表之间联系密切的业务。Hive是数据仓库,是用来进行数据挖掘的。

Hive 架构原理

1.用户接口:Client

CLI(command-line interface)、JDBC/ODBC(jdbc访问hive)、WEBUI(浏览器访问hive)

2.元数据:Metastore

元数据包括:表名、表所属的数据库(默认是default)、表的拥有者、列/分区字段、表的类型(是否是外部表)、表的数据所在目录等;

默认存储在自带的derby数据库中,推荐使用MySQL存储Metastore

3.Hadoop

使用HDFS进行存储,使用MapReduce进行计算。

4.驱动器:Driver

(1)解析器(SQL Parser):将SQL字符串转换成抽象语法树AST,这一步一般都用第三方工具库完成,比如antlr;对AST进行语法分析,比如表是否存在、字段是否存在、SQL语义是否有误。

(2)编译器(Physical Plan):将AST编译生成逻辑执行计划。

(3)优化器(Query Optimizer):对逻辑执行计划进行优化。

(4)执行器(Execution):把逻辑执行计划转换成可以运行的物理计划。对于Hive来说,就是MR/Spark。


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值