代码随想录算法训练
—day58
前言
今天是算法营的第57天,希望自己能够坚持下来!
今天继续图论part!今日任务:
● 101.孤岛的总面积
● 102.沉没孤岛
● 103.水流问题
● 104.建造最大岛屿
一、101.孤岛的总面积
思路:
本题要求找到不靠边的陆地面积,那么我们只要从周边找到陆地然后 通过 dfs或者bfs 将周边靠陆地且相邻的陆地都变成海洋,然后再去重新遍历地图 统计此时还剩下的陆地就可以了。
遍历地图周围四个边,将靠地图四边的陆地(绿色)都标记成水
然后再遍历地图,找到剩余的岛屿:
深搜
代码如下:
#include<iostream>
#include<vector>
using namespace std;
int count;
int dir[4][2] = {0, 1, 1, 0, -1, 0, 0, -1};
void dfs(vector<vector<int>>& grids, int x, int y) {
if (grids[x][y] == 0) return;
grids[x][y] = 0;
count++;
for (int i = 0; i < 4; i++) {
int nextx = x + dir[i][0];
int nexty = y + dir[i][1];
if (nextx < 0 || nextx >= grids.size() || nexty < 0 || nexty >= grids[0].size()) continue;
dfs(grids, nextx, nexty);
}
}
int main() {
int n, m;
cin >> n >> m;
vector<vector<int>> grids(n, vector<int>(m, 0));
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> grids[i][j];
}
}
//将接触边缘的岛屿先标记成水
//从左侧和右侧向中间遍历
for (int i = 0; i < n; i++) {
if (grids[i][0] == 1) dfs(grids, i, 0);
if (grids[i][m-1] == 1) dfs(grids, i, m-1);
}
//从上面和下面向中间遍历
for (int j = 0; j < m; j++) {
if (grids[0][j] == 1) dfs(grids, 0, j);
if (grids[n-1][j] == 1) dfs(grids, n-1, j);
}
count = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grids[i][j] == 1) {
dfs(grids, i, j);
}
}
}
cout << count << endl;
return 0;
}
上面是代码随想录的版本,下面是我自己写的版本:
#include<iostream>
#include<vector>
using namespace std;
int count;
int dir[4][2] = {0, 1, 1, 0, -1, 0, 0, -1};
void dfs(vector<vector<int>>& grids, int x, int y) {
if ( grids[x][y] == 0) return;
grids[x][y] = 0;
//标记当前遍历的岛屿不是孤岛
if (x == 0 || x == grids.size()-1 || y == 0 || y == grids[0].size() -1) {
count = -1;
}
//是孤岛才计数面积
if (count != -1)
count++;
for (int i = 0; i < 4; i++) {
int nextx = x + dir[i][0];
int nexty = y + dir[i][1];
if (nextx < 0 || nextx >= grids.size() || nexty < 0 || nexty >= grids[0].size()) continue;
dfs(grids, nextx, nexty);
}
}
int main() {
int n, m;
cin >> n >> m;
vector<vector<int>> grids(n, vector<int>(m, 0));
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> grids[i][j];
}
}
int result = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grids[i][j] == 1) {
count = 0;
dfs(grids, i, j);
//累加孤岛面积
if (count > 0) result += count;
}
}
}
cout << result << endl;
return 0;
}
广搜
代码如下:
#include<iostream>
#include<vector>
#include<queue>
using namespace std;
int count;
int dir[4][2] = {0, 1, 1, 0, -1, 0, 0, -1};
void bfs(vector<vector<int>>& grids, int x, int y) {
queue<pair<int,int>> que;
que.push({x, y});
grids[x][y] = 0;
count++;
while (!que.empty()) {
pair<int, int> cur = que.front();
que.pop();
int curx = cur.first;
int cury = cur.second;
for (int i = 0; i < 4; i++) {
int nextx = curx + dir[i][0];
int nexty = cury + dir[i][1];
if (nextx < 0 || nextx >= grids.size() || nexty < 0 || nexty >= grids[0].size()) continue;
if (grids[nextx][nexty] == 1) {
que.push({nextx, nexty});
grids[nextx][nexty] = 0;
count++;
}
}
}
}
int main() {
int n, m;
cin >> n >> m;
vector<vector<int>> grids(n, vector<int>(m, 0));
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> grids[i][j];
}
}
//将接触边缘的岛屿先标记成水
//从左侧和右侧向中间遍历
for (int i = 0; i < n; i++) {
if (grids[i][0] == 1) bfs(grids, i, 0);
if (grids[i][m-1] == 1) bfs(grids, i, m-1);
}
//从上面和下面向中间遍历
for (int j = 0; j < m; j++) {
if (grids[0][j] == 1) bfs(grids, 0, j);
if (grids[n-1][j] == 1) bfs(grids, n-1, j);
}
count = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grids[i][j] == 1) {
bfs(grids, i, j);
}
}
}
cout << count << endl;
return 0;
}
二、102. 沉没孤岛
思路:
一开始我也是想另外用一个visited数组来标记周边岛屿,但对比过代码随想录里的解法,代码随想录的更巧妙:
步骤一:深搜或者广搜将地图周边的 1 (陆地)全部改成 2 (特殊标记)
步骤二:将水域中间 1 (陆地)全部改成 水域(0)
步骤三:将之前标记的 2 改为 1 (陆地)
代码如下:
#include<iostream>
#include<vector>
using namespace std;
int dir[4][2] = {0, 1, 1, 0, -1, 0, 0, -1};
void bfs(vector<vector<int>> &grids, int x, int y) {
if (grids[x][y] == 0 || grids[x][y] == 2) return;
grids[x][y] = 2;
for (int i = 0; i < 4; i++) {
int nextx = x + dir[i][0];
int nexty = y + dir[i][1];
if (nextx < 0 || nextx >= grids.size() || nexty < 0 || nexty >= grids[0].size()) continue;
bfs(grids, nextx, nexty);
}
}
int main() {
int n, m;
cin >> n >> m;
vector<vector<int>> grids(n, vector<int>(m, 0));
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> grids[i][j];
}
}
//将不是孤岛的岛屿标记成2
// 从左侧边,和右侧边 向中间遍历
for (int i = 0; i < n; i++) {
if (grids[i][0] == 1) bfs(grids, i, 0);
if (grids[i][m - 1] == 1) bfs(grids, i, m - 1);
}
// 从上边和下边 向中间遍历
for (int j = 0; j < m; j++) {
if (grids[0][j] == 1) bfs(grids, 0, j);
if (grids[n - 1][j] == 1) bfs(grids, n - 1, j);
}
//将孤岛标记成0,将其他岛屿标记成1
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grids[i][j] == 1) grids[i][j] = 0;
if (grids[i][j] == 2) grids[i][j] = 1;
}
}
//打印结果
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cout << grids[i][j] << " ";
}
cout << endl;
}
return 0;
}
三、103. 水流问题
图中的蓝色方块上的雨水既能流向第一组边界,也能流向第二组边界。所以最终答案为所有蓝色方块的坐标。
思路:
最直接的想法是遍历每个节点,然后用深搜或者广搜判断是否能到达第一组边界和第二组边界。但是会超时,遍历所有节点是mn,每个节点的深搜或者广搜都需要mn,那么时间复杂度就是m^2 *n^2了
那么反过来想,分别从第一组边界和第二组边界出发,能被两边标记到的节点,也就是能同时到达两组边界的节点。
代码如下:
#include <iostream>
#include <vector>
using namespace std;
int dir[4][2] = {0, 1, 1, 0, -1, 0, 0, -1};
int n, m;
void dfs(vector<vector<int>>& grid, vector<vector<bool>>& visited, int x, int y) {
if (visited[x][y]) return;
visited[x][y] = true;
for (int i = 0; i < 4; i++) {
int nextx = x + dir[i][0];
int nexty = y + dir[i][1];
if (nextx < 0 || nextx >= n || nexty < 0 || nexty >= m) continue;
if (grid[x][y] > grid[nextx][nexty]) continue; // 注意:这里是从低向高遍历
dfs (grid, visited, nextx, nexty);
}
return;
}
int main() {
cin >> n >> m;
vector<vector<int>> grid(n, vector<int>(m, 0));
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> grid[i][j];
}
}
// 标记从第一组边界上的节点出发,可以遍历的节点
vector<vector<bool>> first(n, vector<bool>(m, false));
// 标记从第一组边界上的节点出发,可以遍历的节点
vector<vector<bool>> second(n, vector<bool>(m, false));
// 从最上和最下行的节点出发,向高处遍历
for (int i = 0; i < n; i++) {
dfs(grid, first, i, 0); // 遍历最左列,接触第一组边界
dfs(grid, second, i, m - 1); // 遍历最右列,接触第二组边界
}
// 从最左和最右列的节点出发,向高处遍历
for (int j = 0; j < m; j++) {
dfs(grid, first, 0, j); // 遍历最上行,接触第一组边界
dfs(grid, second, n - 1, j); // 遍历最下行,接触第二组边界
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
// 如果这个节点,从第一组边界和第二组边界出发都遍历过,就是结果
if (first[i][j] && second[i][j]) cout << i << " " << j << endl;
}
}
return 0;
}
四、104. 建造最大岛屿
思路:
1.一次遍历地图,得出各个岛屿的面积,并做编号记录。可以使用map记录,key为岛屿编号,value为岛屿面积
2.如果第一次遍历完发现整个地图都是陆地,直接返回全面积。
3.第二次遍历地图,遍历每格水,寻找当前节点邻近的岛屿,累加邻近岛屿面积(对于每格水,需要有一个set来存放已经遍历过的岛屿)
代码如下:
#include<iostream>
#include<vector>
#include<unordered_map>
#include<unordered_set>
using namespace std;
int dir[4][2] = {0, 1, 1, 0, -1, 0, 0, -1};
int n, m;
int count;
void dfs(vector<vector<int>> &grid, vector<vector<bool>> &visited, int x, int y, int mark) {
if (grid[x][y] == 0 || visited[x][y]) return; //终止条件,遇到水或者已经遍历过的陆地
visited[x][y] = true;
grid[x][y] = mark; //岛屿标记成相应的编号
count++;
for (int i = 0; i < 4; i++) {
int nextx = x + dir[i][0];
int nexty = y + dir[i][1];
if (nextx < 0 || nextx >= n || nexty < 0 || nexty >= m) continue;
dfs(grid, visited, nextx, nexty, mark);
}
}
int main() {
cin >> n >> m;
vector<vector<int>> grid(n, vector<int>(m, 0));
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cin >> grid[i][j];
}
}
vector<vector<bool>> visited(n, vector<bool>(m, false)); //标记访问过的点
unordered_map<int,int> gridNum; //存储每个岛屿的面积
bool isAllGrid = true; //标记是否整个地图都是陆地
int mark = 2; //记录每个岛屿的编号
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grid[i][j] == 0) isAllGrid = false;
if (!visited[i][j] && grid[i][j] == 1) {
count = 0; //初始化每个岛屿的面积
dfs(grid, visited, i, j, mark); //寻找相连的陆地部分
gridNum[mark] = count; //记录每个岛屿的面积
mark++;
}
}
}
//如果全是陆地,直接输出整个面积
if (isAllGrid) {
cout << n*m << endl;
return 0;
}
int result = 0;
unordered_set<int> visitedGrid; //标记访问过的岛屿
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
count = 1; //初始化岛屿面积,水变陆地的这格先加上
visitedGrid.clear(); //每次遍历到新的一格水,清空之前累加过的岛屿
//遍历每一格水,然后统计相邻的面积
if (grid[i][j] == 0) {
//遍历[i,j]四周的岛屿,统计总面积
for (int k = 0; k < 4; k++) {
int neari = i + dir[k][0];
int nearj = j + dir[k][1];
if (neari < 0 || neari >= n || nearj < 0 || nearj >= m) continue;
int markNum = grid[neari][nearj]; //岛屿的编号
if (visitedGrid.count(markNum)) continue; //已经统计过了的岛屿就跳过
count += gridNum[markNum]; //累加岛屿面积
visitedGrid.insert(markNum); //标记已经统计过该岛屿了
}
}
result = max(count, result);
}
}
cout << result << endl;
return 0;
}
时间复杂度 n * n 。
总结
1.对于孤岛的处理,从四周先搜索挨着四周的岛屿。
2.如果求孤岛,先遍历四周将周边岛屿标记成0,再重新遍历地图,就剩下孤岛了;
3.如果求四周岛屿,先遍历四周将岛屿标记成2,再重新遍历地图,将孤岛沉没:1->0,四周岛屿标记回1:2->1。
4.水流问题,求水流能到达两个边界的节点,转化为从两个边界出发,两边都能到达的节点就是结果。
5.建造最大岛屿,第一次遍历用map存储每个岛屿的面积和编号,第二次遍历水节点,用bfs或者dfs寻找周边岛屿(用set存储找过的岛屿),累加岛屿面积,求最大值。
明天继续加油!