Python 算法基础篇:大O符号表示法和常见时间复杂度分析

本文介绍了大O符号表示法和常见时间复杂度,讲解了算法性能评估的重要指标。通过Python代码示例展示了线性搜索和快速排序的时间复杂度,讨论了O(1)至O(2^n)不同时间复杂度级别,帮助读者理解并选择高效算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python 算法基础篇:大 O 符号表示法和常见时间复杂度分析

引言

在分析和比较算法的性能时,时间复杂度是一项重要的指标。而大 O 符号表示法是用来描述算法时间复杂度的常见表示方法。本篇博客将为你介绍大 O 符号表示法的概念以及常见的时间复杂度分析,同时通过 Python 代码示例来演示它们的应用。

😃😄 ❤️ ❤️ ❤️

1. 大 O 符号表示法

O 符号表示法是一种用来描述算法时间复杂度的记号系统。它表示算法运行时间随输入规模增长的上界。在大 O 符号表示法中,我们通常关注算法的最坏情况下的运行时间。

a ) 大 O 符号的定义

O 符号表示法的定义如下:

  • O ( g ( n
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

挣扎的蓝藻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值