论文笔记
acgan(Conditional Image Synthesis with Auxiliary Classifier GANs)
gan损失函数:
acgan损失函数:
D is trained to maximize LS + LC while G is trained to
maximize LC - LS.AC-GAN学习与类标签无关的z表示形式
广义上讲,
发生器G的结构是一系列“反卷积”层,它们将噪声z和c类别转换为图像
判别器D是具有LeakyReLU非线性的深度卷积神经网络
证明提升了生成图像的鉴别能力和图像的多样性
To measure discriminability, we feed synthesized images
to a pre-trained Inception network (Szegedy et al., 2015)
and report the fraction of the samples for which the Inception network assigned the correct label2
MS-SSIM是已充分表征的感知相似性度量标准的多尺度变体,它试图将对人类感知不重要的图像方面去除掉