Prime Ring Problem
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 52000 Accepted Submission(s): 23028
Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.

Note: the number of first circle should always be 1.

Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in
lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6 8
Sample Output
Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n,num[21],book[21];
//最大输入不超过20,也就是说能达到的最大的素数也就是19+18=37
int prime[12]={2,3,5,7,11,13,17,19,23,29,31,37};
bool isprime(int x){
for(int i=0;i<12;i++)
if(x==prime[i])
return true;
return false;
}
void dfs(int step){
//记得要判断第一个点和最后一个点的和是不是素数
if(step==n&&isprime(1+num[step])){
for(int i=1;i<=n-1;i++) printf("%d ",num[i]);
printf("%d\n",num[n]);
}
else{
for(int i=2;i<=n;i++){
if(!book[i]&&isprime(i+num[step])){
num[step+1]=i;
book[i]=1;
dfs(step+1);
book[i]=0;
}
}
}
}
int main(){
int count=1;
while(~scanf("%d",&n)){
num[1]=1;
memset(book,0,sizeof(book));
printf("Case %d:\n",count++);
dfs(1);
cout<<endl;
}
return 0;
}