摘要:本文深入解析传统计算机视觉特征工程核心算法,并手把手实现首个卷积神经网络。通过OpenCV+SIFT项目与PyTorch实战案例,揭示深度学习如何颠覆传统视觉算法,提供完整可运行的工业级代码。
一、传统特征工程的巅峰:SIFT算法解密
1.1 SIFT核心原理四部曲
1.1.1 尺度空间极值检测
import cv2
import numpy as np
img = cv2.imread('scene.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 构建高斯金字塔
octaves = []
for _ in range(4):
octave = []
for sigma in [1.6*(2**i) for i in range(5)]:
blurred = cv2.GaussianBlur(gray, (0,0), sigmaX=sigma)
octave.append(blurred)
octaves.append(octave)
gray = cv2.pyrDown(gray)
1.1.2 关键点方向分配
# 计算梯度幅值和方向
dx = cv2.Sobel(blurred, cv2.CV_32F, 1, 0)
dy = cv2.Sobel(blurred, cv2.CV_32F, 0, 1)
magnitude = np.sqrt(dx**2 + dy**2)
orientation = np.arctan2(dy, dx) * 180 / np.pi
# 构建方向直方图
hist = np.zeros(36)
for y in range(keypt_y-8, keypt_y+8):
for x in range(keypt_x-8, keypt_x+8):
bin_idx = int(orientation[y,x]//10)
hist[bin_idx] += magnitude[y,x]
1.2 OpenCV完整SIFT实战
sift = cv2.SIFT_create()
kp, des = sift.detectAndCompute(gray, None)