On Loss Functions for Deep Neural Networks in Classification读后感

本文探讨了在分类问题中,不同损失函数的表现与适用场景。对于追求准确率的研究,平方合页损失(Squared Hinge Loss)因其更快的收敛速度和更好的性能成为优选。它在训练集标签噪声和输入空间噪声方面更为鲁棒。然而,在高度嘈杂的数据集上,论文中详述的期望损失则表现最佳。此外,非经典损失函数如Tanimoto损失和Cauchy-Schwarz发散值得进一步研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分类问题中的另一类loss函数

在这里插入图片描述

In particular, for purely accuracy focused research, squared hinge loss seems
to be a better choice at it converges faster as well as provides better performance.
It is also more robust to noise in the training set labelling and
slightly more robust to noise in the input space. However, if one works
with highly noised dataset (both input and output spaces) – the expectation
losses described in detail in this paper – seem to be the best choice,
both from theoretical and empirical perspective.
At the same time this topic is far from being exhausted, with a large
amount of possible paths to follow and questions to be answered. In
particular, non-classical loss functions such as Tanimoto loss(噪声大的情况) and CauchySchwarz
Divergence(无噪声) are worth further investigation.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值