图论 2017CCPC女生赛 G

本文介绍了一种名为“CoolGraph”的特殊类型图的生成方法及其判定是否存在完美匹配的问题。通过从后往前检查每个节点的连接状态,判断是否能形成一个覆盖所有节点的匹配。
Little Q loves playing with different kinds of graphs very much. One day he thought about an interesting category of graphs called ``Cool Graph'', which are generated in the following way: 
Let the set of vertices be {1, 2, 3, ..., nn}. You have to consider every vertice from left to right (i.e. from vertice 2 to nn). At vertice ii, you must make one of the following two decisions: 
(1) Add edges between this vertex and all the previous vertices (i.e. from vertex 1 to i1i−1). 
(2) Not add any edge between this vertex and any of the previous vertices. 
In the mathematical discipline of graph theory, a matching in a graph is a set of edges without common vertices. A perfect matching is a matching that each vertice is covered by an edge in the set. 
Now Little Q is interested in checking whether a ''Cool Graph'' has perfect matching. Please write a program to help him. 
InputThe first line of the input contains an integer T(1T50)T(1≤T≤50), denoting the number of test cases. 
In each test case, there is an integer n(2n100000)n(2≤n≤100000) in the first line, denoting the number of vertices of the graph. 
The following line contains n1n−1 integers a2,a3,...,an(1ai2)a2,a3,...,an(1≤ai≤2), denoting the decision on each vertice.OutputFor each test case, output a string in the first line. If the graph has perfect matching, output ''Yes'', otherwise output ''No''. 
Sample Input
3
2
1
2
2
4
1 1 2
Sample Output
Yes
No
No

  题意:真的有必要好好分析英语长短句。

a matching in a graph is a set of edges without common vertices.(图的匹配是边的集合,没有公共点的边的集合)A perfect matching is a matching that each vertice is covered by an edge in the set.(每一个顶点被一条边覆盖,被边的集合里的一条边覆盖)

问能否找到一个边集使得每一个顶点都被一条边覆盖。

类似于图的完全匹配(每个顶点只有一条边),所以n为奇数的时候肯定不行。

不用图的完全匹配是n太大了,而且建图规则已经告诉了。

所以从后往前如果是1,++,如果是2,--,如果小于0就不行了。 

CCPC女生程序设计竞即中国大学生程序设计竞女生专场,不同年份的CPCP女生有不同的题目及解题思路。 2021年的CCPC女生有公交路线题,解题代码通过输入公交路线相关信息,根据不同条件判断输出结果,当`x < y`和`x >= y`时分别进行不同的判断逻辑,最终输出“Wrong”“Right”或“Unsure”[^3]。 ```cpp #include <bits/stdc++.h> using namespace std; int main() { int n, x, y, arr[15]={0}; cin >> n >> x >> y; for (int i = 1; i <= n; i++) { cin >> arr[i]; } int m, xx, brr[15]={0}; cin >> m; if(x<y){ for(int i=1;i<=m;i++){ cin>>brr[i]; if(brr[i]!=arr[i+x]){ cout<<"Wrong"<<endl; return 0; } } if(x-1<1||x-m<1){ cout<<"Right"<<endl; return 0; } for(int i=1;i<=m;i++){ if(arr[x-i]!=brr[i]){ cout<<"Right"<<endl; return 0; } } cout<<"Unsure"<<endl; return 0; }else{ for(int i=1;i<=m;i++){ cin>>brr[i]; if(brr[i]!=arr[x-i]){ cout<<"Wrong"<<endl; return 0; } } if(x==n||x+m>n){ cout<<"Right"<<endl; return 0; } for(int i=1;i<=m;i++){ if(arr[x+i]!=brr[i]){ cout<<"Wrong"<<endl; return 0; } } cout<<"Unsure"<<endl; } return 0; } ``` 2023年的CCPC女生,有一道题的解题思路是对样例进行模拟,从最小数开始排,在数组中碰到前后相等的数就从后往前排,当数组中所给的数比它前边的数小,就判断为“ -1”。也可当成一个思维题,从最小的递增子序列长度从一开始排列,碰到一样长度的就从后往前排列,当递增序列断档不连续时该序列不合法[^2][^4]。 ```cpp #include "vector" using namespace std; const int N = 1e7; vector<int > v[N]; int a[N], b[N]; int main(){ int n; ios::sync_with_stdio(false),cin.tie(0),cout.tie(0); int max = 0, flag = 0; cin>>n; for(int i = 1; i <= n; i++){ cin>>a[i]; if(a[i] > max) { if(a[i] - max > 1) flag = 1; max = a[i]; } v[a[i]].push_back(i); } if(flag) cout<<"-1"<<endl; else { int p = 1; for(int i = 1; i <= max; i++) for(int j = v[i].size() - 1; j >= 0; j --) { int t = v[i][j]; b[t] = p ++; } for(int i = 1; i <= n; i++) cout<<b[i]<<' '; cout<<endl; } } ``` 2024年的CCPC女生,有题目解题思路是观察到最优解是尽可能高效率地使用`C`与`P`,每个`CCPC`固定一个`P`,另外的`C`看公共前后缀,通过模拟实现,代码通过统计字符串中`C`和`P`的数量,输出`P`的数量和`(C的数量 - 1) / 2`中的较小值[^1]。 ```cpp string s; cin >> s; map<char,int> mp; for(int i = 0;i<sz(s);i++)mp[s[i]]++; cout << min(mp['P'] , (mp['C'] - 1) / 2) <<endl; return 0; ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值