import numpy as np
import scipy
import numpy.linalg as LA
n=10
m=20
A=np.random.random((n,m))
b_=np.random.rand(m)
b=b_.T
x=b/A
z=A*x-b
print(scipy.argmin(LA.norm(z,2)))
0
import numpy
import scipy.optimize as so
import matplotlib.pyplot
def func(x):
return -1*numpy.sin((x- 2) * numpy.exp(-1*x * 2)) ** 2
a=-1*so.fminbound(func,-5,5)
print(a)
3.4589877431969027
import scipy.spatial.distance as distance
import numpy as np
m = 5
n = 4
X = np.random.rand(m, n)
dis = distance.pdist(X,'euclidean')
z = distance.squareform(dis)
print(z)
[[0. 0.54362045 0.45114014 0.35454277 0.77778626]
[0.54362045 0. 0.90772523 0.86819444 1.18751828]
[0.45114014 0.90772523 0. 0.42826591 0.34740282]
[0.35454277 0.86819444 0.42826591 0. 0.74527742]
[0.77778626 1.18751828 0.34740282 0.74527742 0. ]]