So happy!(get 矩阵快速幂)ICPC :E HDU 6198

本文介绍了一种利用矩阵快速幂求解最小mjf-bad数的方法,通过观察斐波那契数列中bad数的规律,推导出bad数的计算公式,并给出具体实现代码。
  1. number number number
  2. Time Limit: 2000/1000 MS (Java/Others) Memory
    Limit: 32768/32768 K (Java/Others) Total Submission(s): 637

    Accepted Submission(s): 407
    Problem Description We define a sequence F:

    ⋅ F0=0,F1=1; ⋅ Fn=Fn−1+Fn−2 (n≥2).

    Give you an integer k, if a positive number n can be expressed by
    n=Fa1+Fa2+…+Fak where 0≤a1≤a2≤⋯≤ak, this positive number is
    mjf−good. Otherwise, this positive number is mjf−bad. Now, give you
    an integer k, you task is to find the minimal positive mjf−bad
    number. The answer may be too large. Please print the answer modulo

  3. Input There are about 500 test cases, end up with EOF. Each test case
    includes an integer k which is described above. (1≤k≤109)

    Output For each case, output the minimal mjf−bad number mod

  4. Sample Input

    1

    Sample Output

    4
    Source 2017 ACM/ICPC Asia Regional Shenyang Online

    前提:矩阵快速幂+斐波那契数列推荐题目(poj3070(斐波那契的矩阵表示))
    思路:
    * 题目要求找bad number,枚举钱四项分别是 4,12,33,88,斐波那契数列为0 , 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89*
    对应的下标分别是0,1,2,3,4,5,6,7,8,9,10,11
    第一个bad number: 4=f4+f3-1;
    第二个bad number :12=f5+f6-1;
    第三个bad number: 33 =f7+f8-1;
    * 因而推导出一下公式: a(n)=f(2*n+2)+f(2*n+1)-1*

代码如下:

#include <bits/stdc++.h>
using namespace std;
const int mod =998244353;
struct matrix
{
   long long  int a[2][2];
};
matrix multply(matrix x,matrix y)
{
    matrix result ;
    memset(result.a,0,sizeof(result.a));
    int i,j,k;
    for (i=0;i<2;i++)
    for (j=0;j<2;j++)
    for (k=0;k<2;k++)
    {
        result.a[i][j]+=x.a[i][k]*y.a[k][j];
        if(result.a[i][j]>=mod)
        result.a[i][j]%=mod;
    }
    return result;
}
matrix pow_mod (matrix a,int n)
{
    matrix result;
    memset(result.a,0,sizeof(result.a));
    for (int i=0;i<2;i++)
    result.a[i][i]=1;
    while (n)
    {
        if(n&1)
         result=multply(result,a);
         a=multply(a,a);
         n>>=1;
    }
    return result ;

}

int main ()
{
    long long int n;
    while (cin>>n)
    {
         n=2*n+1;
         long long  int ans;
         matrix a;
         a.a[0][0]=a.a[0][1]=a.a[1][0]=1;
         a.a[1][1]=0;
         a=pow_mod(a,n);
         ans =a.a[0][0]+a.a[0][1]-1;
//         int i,j;
//         for (i=0;i<2;i++)
//         for (j=0;j<2;j++)
//         if(!j)
//         cout<<a.a[i][j]<<" ";
//         else
//         cout <<a.a[i][j]<<endl;
         if(ans>=mod)
         ans%=mod;
         cout<<ans<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值