leetcode 279. Perfect Squares
题目
Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, …) which sum to n.
Example 1:
Input: n = 12
Output: 3
Explanation: 12 = 4 + 4 + 4.
Example 2:
Input: n = 13
Output: 2
Explanation: 13 = 4 + 9.
解法1:DP
递推公式为:
while j**2<=i:
dp[i] = min(dp[i],dp[i-j**2]+1)
代码
class Solution(object):
def numSquares(self, n):
"""
:type n: int
:rtype: int
"""
if n == 0:
return 0
dp = [float('inf')]*(n+1)
dp[0] = 0
dp[1] = 1
for i in range(2,n+1):
j = 1
while j**2<=i:
dp[i] = min(dp[i],dp[i-j**2]+1)
j+=1
return dp[n]
c++版本
class Solution {
public:
int numSquares(int n) {
vector<int> dp(n+1,INT_MAX);
dp[0] = 0;
vector<int> square_num;
for(int i=1;i<=n/2+1;i++){
square_num.push_back(i*i);
}
// dp[1] = 1;
for(int i=1;i<n+1;i++){
for(int j=0;j<square_num.size();j++){
if(i<square_num[j]) break;
// cout << i << square_num[j] << endl;
dp[i] = min(dp[i-square_num[j]]+1,dp[i]);
}
}
return dp.back();
}
};
时间复杂度:O(N^3/2), 循环N次, 每次尝试N的根号次
空间复杂度:O(N)
这种方法在时间上只超过了%19的用户,证明这种方法速度并不理想
解法2:BFS
算法流程
- 将所有可能合成目标数的perfect square数存在一个base中
- 将现在剩下需要合成的sum,以及已经花掉的step数以pair的方式存到栈中
- 搜索base中可以作为candidate的perfect square数,并将形成的符合条件的pair压入堆栈
- 注意为了得到的结果一定是最短的步数,需要从大到小搜索base,并且以队列方式先进先出FIFO
- 为了进一步加快速度,构建一个visited集合,储存所有已经出现过的curr_left,就是剩下需要被合成的sum
- 当curr_left存在与base中时,证明需要step最少的合成方式已经找到
class Solution(object):
def numSquares(self, n):
"""
:type n: int
:rtype: int
"""
if n<1:
return 0
base = [i**2 for i in range(1,int(math.floor(math.sqrt(n))+1))]
stack = collections.deque()
stack.append((n,0))
visited = set()
visited.add(n)
while stack:
curr_left,curr_step = stack.popleft()
if curr_left in base:
return curr_step+1
for j in reversed(base):
if curr_left-j>0 and curr_left-j not in visited:
stack.append((curr_left-j,curr_step+1))
visited.add(curr_left-j)
时间复杂度:O(N)
空间复杂度:O(N)
这种方法超过了%92.5的用户
c++版本
class Solution {
public:
int numSquares(int n) {
vector<int> square_num;
unordered_map<int,bool> memo;
for(int i=n/2+1;i>=1;i--){
square_num.push_back(i*i);
memo[i*i] = true;
}
vector<int> visited(n+1,0);
queue<pair<int,int>> q;
q.push(make_pair(n,0));
visited[n] = 1;
while(!q.empty()){
int curr_left = q.front().first, curr_step = q.front().second;
q.pop();
if(memo.count(curr_left)) return curr_step+1;
for(auto& num : square_num){
if(curr_left > num && visited[curr_left-num]==0){
q.push(make_pair(curr_left-num,curr_step+1));
visited[curr_left-num] = 1;
}
}
}
return -1;
}
};
解法3:lagrange四平方和定理
四平方和定理如下:
class Solution(object):
def numSquares(self, n):
"""
:type n: int
:rtype: int
"""
while n%4 == 0:
n//=4
#case 1
if n%8 == 7:
return 4
#case 2
if int(n**0.5)**2 == n:
return 1
#case 3
i = 1
while i**2 < n:
left = n-i**2
if int(left**0.5)**2 == left:
return 2
i+=1
#case 4
return 3
时间复杂度:O(N^1/2)
空间复杂度:O(1)这种解法从时间和空间上都是最优的,超过了%99的用户
注意这边判断一个数是否能开平方的方法
参考:
https://blog.youkuaiyun.com/l_mark/article/details/89044137
https://blog.youkuaiyun.com/huhehaotechangsha/article/details/86597713