前面在(二)中已经得到下面的结果啦:
[10, 2000] loss: 0.367
[10, 4000] loss: 0.382
[10, 6000] loss: 0.417
[10, 8000] loss: 0.472
[10, 10000] loss: 0.452
[10, 12000] loss: 0.488
Finished Training
Accuracy of the network on the 10000 test images: 68 %
Accuracy of plane : 75 %
Accuracy of car : 78 %
Accuracy of bird : 64 %
Accuracy of cat : 50 %
Accuracy of deer : 49 %
Accuracy of dog : 65 %
Accuracy of frog : 79 %
Accuracy of horse : 71 %
Accuracy of ship : 80 %
Accuracy of truck : 70 %
现在得到新的结果如下:
使用全局池化后参数降低了不少。
AAPnet(
(conv1): Conv2d(3, 16, kernel_size=(5, 5), stride=(1, 1))
(pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(16, 36, kernel_size=(5, 5), stride=(1, 1))
(pool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(app): AdaptiveAvgPool2d(output_size=1)
(fc3): Linear(in_features=36, out_features=10, bias=True)
)
其loss值惨不忍睹
[10, 2000] loss: 0.978
[10, 4000] loss: 0.964
[10, 6000] loss: 0.953
[10, 8000] loss: 0.976
[10, 10000] loss: 0.959
[10, 12000] loss: 0.981
Finished Training
net have 16022 paramerters in total
Accuracy of the network on the 10000 test images: 63 %
Accuracy of plane : 62 %
Accuracy of car : 72 %
Accuracy of bird : 64 %
Accuracy of cat : 43 %
Accuracy of deer : 37 %
Accuracy of dog : 55 %
Accuracy of frog : 83 %
Accuracy of