//树状数组 :利用二进制性质,可在O(logn)对区间前缀进行查询和修改操作
const int N=100050;
int c[N],ans[N]; //c[n]表示a[1~n]的和,a数组省略
int lowbit(int x) //求2^k
{
return x & -x;
}
int getsum(int n) //区间查询,求a[1~n]的和
{
int res = 0;
while(n>0)
{
res+=c[n];
n=n-lowbit(n);
}
return res;
}
int change(int x) //单点更新,将a[x]的值加1
{
while(x<=N)
{
c[x]++;
x+=lowbit(x);
}
}
int main()
{
int n;
cin>>n;
memset(c,0,sizeof(c));
memset(ans,0,sizeof(ans));
for(int i=0;i<n;i++)
{
int x,y;
cin>>x>>y;
x++;
ans[getsum(x)]++;
change(x);
}
for(int i=0;i<n;i++)
cout<<ans[i]<<endl;
return 0;
}
//单点操作,区间更新
using namespace std;
#define INF 10000000
#define lson l,mid,rt<<1 //左儿子
#define rson mid+1,r,rt<<1|1 //右儿子
const int maxn = 222222;
struct Node{
int Max,Min; //区间的最大值和最小值
int sum; //区间的和
}stree[maxn<<2];
void up(int rt){ //更新该区间的最值与和
stree[rt].Max=max(stree[rt<<1].Max,stree[rt<<1|1].Max);
stree[rt].Min=min(stree[rt<<1].Min,stree[rt<<1|1].Min);
stree[rt].sum=stree[rt<<1].sum+stree[rt<<1|1].sum;
}
void build(int l,int r,int rt){ //在结点i上建立区间为[l,r]
if(l==r){ //叶子结点
int num;
scanf("%d",&num);
stree[rt].Max=stree[rt].Min=stree[rt].sum=num;
return ;
}
int mid=(l+r)>>1;
build(lson); //建立左儿子
build(rson); //建立右儿子
up(rt); //更新
}
int querymax(int a,int b,int l,int r,int rt){ //求区间[a,b]的最大值
if(a<=l&&r<=b){ //如果全包含,直接取区间最大值
return stree[rt].Max;
}
int mid = (r+l)>>1;
int ret = -INF;
if(a<=mid) ret=max(ret,querymax(a,b,lson));//如果左端点在中点的左边,找出左区间的最大值
if(mid<b) ret=max(ret,querymax(a,b,rson));//如果右端点在中点的右边,找出右区间(以及左区间)的最大值
return ret;
}
int querymin(int a,int b,int l,int r,int rt){ //求区间[a,b]的最小值
if(a<=l&&r<=b){ //如果全包含,直接取区间最小值
return stree[rt].Min;
}
int mid = (r+l)>>1;
int ret = INF;
if(a<=mid) ret=min(ret,querymin(a,b,lson));//如果左端点在中点的左边,找出左区间的最小值
if(mid<b) ret=min(ret,querymin(a,b,rson)); //如果右端点在中点的右边,找出右区间(以及左区间)的最小值
return ret;
}
int querysum(int a,int b,int l,int r,int rt){ //求区间[a,b]的和(a,b的值相同时为求单点的值)
if(a<=l&&r<=b){ //如果全包含,直接取区间的和
return stree[rt].sum;
}
int mid = (r+l)>>1;
int ret=0;
if(a<=mid) ret+=querysum(a,b,lson);
if(mid<b) ret+=querysum(a,b,rson);
return ret;
}
void uppoint(int a,int b,int l,int r,int rt){ //单点替换,把第a个数换成b
if(l==r){
stree[rt].Max=stree[rt].Min=stree[rt].sum=b;
return ;
}
int mid =(r+l)>>1;
if(a<=mid)uppoint(a,b,lson);
else uppoint(a,b,rson);
up(rt);
}
void upadd(int a,int b,int l,int r,int rt){ //单点增减,把第a个数增减b
if(l==r){
stree[rt].sum=stree[rt].sum+b;
stree[rt].Max=stree[rt].Max+b;
stree[rt].Min=stree[rt].Min+b;
return ;
}
int mid=(l+r)>>1;
if(a<=mid) upadd(a,b,lson);
else upadd(a,b,rson);
up(rt);
}
int main()
{
//freopen("F:\\11.txt","r",stdin);
int n,q;
while(~scanf("%d%d",&n,&q)){
build(1,n,1);//build(l,r,rt);
while(q--){
char op[10];
int a,b;
scanf("%s%d%d",op,&a,&b);
if(op[0]=='X'){//求区间[a,b]的最大值
printf("%d\n",querymax(a,b,1,n,1));//querymax(int a,int b,int l,int r,int rt);
}
else if(op[0]=='N'){//求区间[a,b]的最小值
printf("%d\n",querymin(a,b,1,n,1));//querymin(int a,int b,int l,int r,int rt);
}
else if(op[0]=='U'){//单点替换,把第a个数换成b
uppoint(a,b,1,n,1);//uppoint(int a,int b,int l,int r,int rt);
}
else if(op[0]=='S'){//求区间[a,b]的和(a,b的值相同时为求单点的值)
printf("%d\n",querysum(a,b,1,n,1));//querysum(int a,int b,int l,int r,int rt);
}
else if(op[0]=='A'){//单点增加,把第a个数增加b
upadd(a,b,1,n,1);
}
else if(op[0]=='E'){//单点减少,把第a个数减少b
upadd(a,-b,1,n,1);
}
}
}
return 0;
}
//区间更换,区间查询
#define max(a,b) (a>b)?a:b
#define min(a,b) (a>b)?b:a
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
const int maxn = 100100;
const int INF=0x7fffffff;
using namespace std;
int lazy[maxn<<2];
int MAX[maxn<<2];
int MIN[maxn<<2];
int SUM[maxn<<2];
void PushUp(int rt) { //由左孩子、右孩子向上更新父节点
SUM[rt] = SUM[rt<<1] + SUM[rt<<1|1];
MAX[rt] = max(MAX[rt<<1],MAX[rt<<1|1]);
MIN[rt] = min(MIN[rt<<1],MIN[rt<<1|1]);
}
void PushDown(int rt,int m) { //向下更新
if (lazy[rt]) { //懒惰标记
lazy[rt<<1] = lazy[rt<<1|1] = lazy[rt];
SUM[rt<<1] = (m - (m >> 1)) * lazy[rt];
SUM[rt<<1|1] = ((m >> 1)) * lazy[rt];
MAX[rt<<1]=MAX[rt<<1|1]=lazy[rt];
MIN[rt<<1]=MIN[rt<<1|1]=lazy[rt];
lazy[rt] = 0;
}
}
//所有的l,r,rt 带入1,n,1
void build(int l,int r,int rt) { //初始化建树
lazy[rt] = 0;
if (l== r) {
SUM[rt]=MAX[rt]=MIN[rt]=0; //初始化为0的建树
/*scanf("%d",&SUM[rt]); //边读入边建树的方法
MAX[rt]=MIN[rt]=SUM[rt];
*/
return ;
}
int m = (l + r) >> 1;
build(lson);
build(rson);
PushUp(rt);
}
void update(int L,int R,int v,int l,int r,int rt) { //将L~R区间的值置为v
//if(L>l||R>r) return;
if (L <= l && r <= R) {
lazy[rt] = v;
SUM[rt] = v * (r - l + 1);
MIN[rt] = v;
MAX[rt] = v;
//printf("%d %d %d %d %d\n", rt, sum[rt], c, l, r);
return ;
}
PushDown(rt , r - l + 1);
int m = (l + r) >> 1;
if (L <= m) update(L , R , v , lson);
if (R > m) update(L , R , v , rson);
PushUp(rt);
}
int querySUM(int L,int R,int l,int r,int rt) { //求区间L~R的和
if (L <= l && r <= R) {
//printf("%d\n", sum[rt]);
return SUM[rt];
}
PushDown(rt , r - l + 1);
int m = (l + r) >> 1;
int ret = 0;
if (L <= m) ret += querySUM(L , R , lson);
if (m < R) ret += querySUM(L , R , rson);
return ret;
}
int queryMIN(int L,int R,int l,int r,int rt) { //求区间L~R的最小值
if (L <= l && r <= R) {
//printf("%d\n", sum[rt]);
return MIN[rt];
}
PushDown(rt , r - l + 1);
int m = (l + r) >> 1;
int ret = INF;
if (L <= m) ret = min(ret, queryMIN(L , R , lson));
if (m < R) ret = min(ret,queryMIN(L , R , rson));
return ret;
}
int queryMAX(int L,int R,int l,int r,int rt) { //求区间L~R的最大值
if (L <= l && r <= R) {
//printf("%d\n", sum[rt]);
return MAX[rt];
}
PushDown(rt , r - l + 1);
int m = (l + r) >> 1;
int ret = -INF;
if (L <= m) ret = max(ret, queryMAX(L , R , lson));
if (m < R) ret = max(ret,queryMAX(L , R , rson));
return ret;
}
int main() {
int n , m;
char str[5];
while(scanf("%d%d",&n,&m)) {
build(1 , n , 1);
while (m--) {
scanf("%s",str);
int a , b , c;
if(str[0]=='T') {
scanf("%d%d%d",&a,&b,&c);
update(a , b , c , 1 , n , 1);
} else if(str[0]=='Q') {
scanf("%d%d",&a,&b);
cout<<querySUM(a,b,1,n,1)<<endl;
} else if(str[0]=='A') {
scanf("%d%d",&a,&b);
cout<<queryMAX(a,b,1,n,1)<<endl;
} else if(str[0]=='I') {
scanf("%d%d",&a,&b);
cout<<queryMIN(a,b,1,n,1)<<endl;
}
}
}
return 0;
}
//区间增加,区间查询
#define max(a,b) (a>b)?a:b
#define min(a,b) (a>b)?b:a
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
const int maxn = 100100;
const int INF=0x7fffffff;
using namespace std;
int lazy[maxn<<2];
int SUM[maxn<<2],MAX[maxn<<2],MIN[maxn<<2];
void putup(int rt) {
SUM[rt] = SUM[rt<<1] + SUM[rt<<1|1];
MAX[rt] =max(MAX[rt<<1],MAX[rt<<1|1]) ;
MIN[rt] =min(MIN[rt<<1],MIN[rt<<1|1]);
}
void putdown(int rt,int m) {
if (lazy[rt]) {
lazy[rt<<1] += lazy[rt];
lazy[rt<<1|1] += lazy[rt];
SUM[rt<<1] += lazy[rt] * (m - (m >> 1));
SUM[rt<<1|1] += lazy[rt] * (m >> 1);
MAX[rt<<1]+=lazy[rt];
MAX[rt<<1|1] +=lazy[rt];
MIN[rt<<1]+=lazy[rt];
MIN[rt<<1|1]+=lazy[rt];
lazy[rt] = 0;
}
}
//以下的 l,r,rt 都带入 1,n,1
void build(int l,int r,int rt) { //初始化建树
lazy[rt] = 0;
if (l == r) {
//初始化树为0的写法
SUM[rt]=MAX[rt]=MIN[rt]=0;
/* //边读入边建树的写法
scanf("%d",&SUM[rt]);
MAX[rt]=MIN[rt]=SUM[rt];
*/
return ;
}
int m = (l + r) >> 1;
build(lson);
build(rson);
putup(rt);
}
void update(int L,int R,int v,int l,int r,int rt) { //将区间L~R的值增加v
if (L <= l && r <= R) {
lazy[rt] += v;
SUM[rt] += v * (r - l + 1);
MAX[rt]+=v;
MIN[rt]+=v;
return ;
}
putdown(rt , r - l + 1);
int m = (l + r) >> 1;
if (L <= m) update(L , R , v , lson);
if (m < R) update(L , R , v , rson);
putup(rt);
}
int querySUM(int L,int R,int l,int r,int rt) { //求区间L~R的和
if (L <= l && r <= R) {
return SUM[rt];
}
putdown(rt , r - l + 1);
int m = (l + r) >> 1;
int ret = 0;
if (L <= m) ret += querySUM(L , R , lson);
if (m < R) ret += querySUM(L , R , rson);
return ret;
}
int queryMAX(int L,int R,int l,int r,int rt) { //求区间L~R的最大值
if (L <= l && r <= R) {
return MAX[rt];
}
putdown(rt , r - l + 1);
int m = (l + r) >> 1;
int ret = -INF;
if (L <= m) ret =max(ret,queryMAX(L , R , lson)) ;
if (m < R) ret =max(ret,queryMAX(L , R , rson)) ;
return ret;
}
int queryMIN(int L,int R,int l,int r,int rt) { //求区间L~R的最小值
if (L <= l && r <= R) {
return MIN[rt];
}
putdown(rt , r - l + 1);
int m = (l + r) >> 1;
int ret = INF;
if (L <= m) ret = min(ret,queryMIN(L , R , lson));
if (m < R) ret = min(ret,queryMIN(L , R , rson));
return ret;
}
int main() {
int n , m;
int a , b , c;
char str[5];
scanf("%d%d",&n,&m);
build(1 , n , 1);
while (m--) {
scanf("%s",str);
if (str[0] == 'S') {
scanf("%d%d",&a,&b);
printf("%d\n",querySUM(a , b , 1 , n , 1));
} else if(str[0]=='C') {
scanf("%d%d%d",&a,&b,&c);
update(a , b , c , 1 , n , 1);
} else if(str[0]=='A') {
scanf("%d%d",&a,&b);
printf("%d\n",queryMAX(a , b , 1 , n , 1));
} else if(str[0]=='I') {
scanf("%d%d",&a,&b);
printf("%d\n",queryMIN(a , b , 1 , n , 1));
}
}
return 0;
}