手写VIO第8章--相机与IMU时间戳同步--作业

本文探讨了视觉惯性里程计(VIO)中相机与IMU的时间戳同步问题,介绍了基于B样条的时间戳估计算法流程,并讨论了时间戳延迟的雅克比推导。重点在于如何通过最大似然估计方法实现多传感器间的时空联合标定。

0. 题目

在这里插入图片描述

1. T1 逆深度参数化时的特征匀速模型的重投影误差

参考常鑫助教的答案:思路是将i时刻的观测投到world系,再用j时刻pose和外参投到j时刻camera坐标系下,归一化得到预测的二维坐标(这里忽略了camera的内参,逆深度是在camera系下)
要计算的是i时刻和j时刻之间的补偿之后的u坐标的重投影误差,所以i时刻也要补偿,具体步骤见下,式(5)参照14讲P47的公式,已经用过很多次了。
在这里插入图片描述

2. T2 阅读Kalibr论文,总结基于 B 样条的时间戳估计算法流程

2.1 答题

论文题目: Unified Temporal and Spatial Calibration for Multi-Sensor Systems
多传感器的联合时空标定

B(ackground):标定时time offset和外参是分开标的(但实际上二者应该有联系)。
I(ntention):在不支持硬件或者软件上时间戳同步的多传感器上实现较高精度的多传感器联合时空标定。
M(ethod):提出一个estimator和一个框架来联合标定。
R(esult):精度高。
C(conclusion):好,有望拓展到其他的sensor联合标定。

论文contri(bution):

  1. 提出一种方法标定fixed时间延迟
  2. 推导一个estimator可以同时标时间戳和外参(rotation only)
  3. 数据集和真实数据上的结果证明estimator估计时间戳很准
  4. 准是因为很好的用了之前别人没用的加计数据

助教的学术话版本:

  1. 提出一种统一的使用批量、连续时间下的最大似然估计方法,估计多传感器之间的固定时间戳延迟。
  2. 提出一个可以同时校准相机和IMU之间位姿和时间戳延迟的估计模型。
  3. 这个估计模型应用在仿真数据和真实数据上,都有足够的灵敏度估算出时间戳延迟。
  4. 证明时间戳延迟估计明显受益于在加速度测量中所包含的附加信息。

论文主要理论(助教答案):

根据原作 https://pan.quark.cn/s/459657bcfd45 的源码改编 Classic-ML-Methods-Algo 引言 建立这个项目,是为了梳理和总结传统机器学习(Machine Learning)方法(methods)或者算法(algo),和各位同仁相互学习交流. 现在的深度学习本质上来自于传统的神经网络模型,很大程度上是传统机器学习的延续,同时也在不少时候需要结合传统方法来实现. 任何机器学习方法基本的流程结构都是通用的;使用的评价方法也基本通用;使用的一些数学知识也是通用的. 本文在梳理传统机器学习方法算法的同时也会顺便补充这些流程,数学上的知识以供参考. 机器学习 机器学习是人工智能(Artificial Intelligence)的一个分支,也是实现人工智能最重要的手段.区别于传统的基于规则(rule-based)的算法,机器学习可以从数据中获取知识,从而实现规定的任务[Ian Goodfellow and Yoshua Bengio and Aaron Courville的Deep Learning].这些知识可以分为四种: 总结(summarization) 预测(prediction) 估计(estimation) 假想验证(hypothesis testing) 机器学习主要关心的是预测[Varian在Big Data : New Tricks for Econometrics],预测的可以是连续性的输出变量,分类,聚类或者物品之间的有趣关联. 机器学习分类 根据数据配置(setting,是否有标签,可以是连续的也可以是离散的)和任务目标,我们可以将机器学习方法分为四种: 无监督(unsupervised) 训练数据没有给定...
本系统采用微信小程序作为前端交互界面,结合Spring BootVue.js框架实现后端服务及管理后台的构建,形成一套完整的电子商务解决方案。该系统架构支持单一商户独立运营,亦兼容多商户入驻的平台模式,具备高度的灵活性扩展性。 在技术实现上,后端以Java语言为核心,依托Spring Boot框架提供稳定的业务逻辑处理数据接口服务;管理后台采用Vue.js进行开发,实现了直观高效的操作界面;前端微信小程序则为用户提供了便捷的移动端购物体验。整套系统各模块间紧密协作,功能链路完整闭环,已通过严格测试优化,符合商业应用的标准要求。 系统设计注重业务场景的全面覆盖,不仅包含商品展示、交易流程、订单处理等核心电商功能,还集成了会员管理、营销工具、数据统计等辅助模块,能够满足不同规模商户的日常运营需求。其多店铺支持机制允许平台方对入驻商户进行统一管理,同时保障各店铺在品牌展示、商品销售及客户服务方面的独立运作空间。 该解决方案强调代码结构的规范性可维护性,遵循企业级开发标准,确保了系统的长期稳定运行后续功能迭代的可行性。整体而言,这是一套技术选型成熟、架构清晰、功能完备且可直接投入商用的电商平台系统。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值