python(53): 多线程与多进程

一. 多进程与多线程关系

进程(process)和线程(thread)是操作系统的基本概念,但是它们比较抽象,不容易掌握。关于多进程和多线程,教科书上最经典的一句话是“进程是资源分配的最小单位,线程是CPU调度的最小单位”。 线程是程序中一个单一的顺序控制流程。进程内一个相对独立的、可调度的执行单元,是系统独立调度和分派CPU的基本单位指运行中的程序的调度单位。在单个程序中同时运行多个线程完成不同的工作,称为多线程。

线程与进程的区别可以归纳为以下4点:

  • 地址空间和其它资源(如打开文件):进程间相互独立,同一进程的各线程间共享。某进程内的线程在其它进程不可见。
  • 通信:进程间通信IPC,线程间可以直接读写进程数据段(如全局变量)来进行通信——需要进程同步和互斥手段的辅助,以保证数据的一致性。
  • 调度和切换:线程上下文切换比进程上下文切换要快得多。
  • 在多线程OS中,进程不是一个可执行的实体。

二.Python全局解释器锁GIL

Python代码的执行由Python 虚拟机(也叫解释器主循环,CPython版本)来控制,Python 在设计之初就考虑到要在解释器的主循环中,同时只有一个线程在执行,即在任意时刻,只有一个线程在解释器中运行。对Python 虚拟机的访问由全局解释器锁(GIL)来控制,正是这个锁能保证同一时刻只有一个线程在运行。

GIL 有什么好处?简单来说,它在单线程的情况更快,并且在和 C 库结合时更方便,而且不用考虑线程安全问题,这也是早期 Python 最常见的应用场景和优势。另外,GIL的设计简化了CPython的实现,使得对象模型,包括关键的内建类型如字典,都是隐含可以并发访问的。锁住全局解释器使得比较容易的实现对多线程的支持,但也损失了多处理器主机的并行计算能力。

在多线程环境中,Python 虚拟机按以下方式执行:

  1. 设置GIL
  2. 切换到一个线程去运行
  3. 运行直至指定数量的字节码指令,或者线程主动让出控制(可以调用sleep(0))
  4. 把线程设置为睡眠状态
  5. 解锁GIL
  6. 再次重复以上所有步骤

三.针对GIL的应对措施:

  • 使用更高版本Python(对GIL机制进行了优化)
  • 使用多进程替换多线程(多进程之间没有GIL,但是进程本身的资源消耗较多)
  • 线程绑定cpu,减少切换开销
  • 使用Jython、IronPython等无GIL解释器
  • 全IO密集型任务时才使用多线程
  • 使用协程(高效的单线程模式,也称微线程;通常与多进程配合使用)
  • 将关键组件用C/C++编写为Python扩展,通过ctypes使Python程序直接调用C语言编译的动态链接库的导出函数。(with nogil调出GIL限制)

参考:

Python 多线程与多进程 – 标点符

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值