PAT 1059 Prime Factors (25)

本文介绍了一种质因数分解算法的实现方法,并通过C++代码详细展示了如何将一个正整数N分解为其所有质因数的形式。该算法能够有效地处理在long int范围内的任意正整数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given any positive integer N, you are supposed to find all of its prime factors, and write them in the format N = p~1~\^k~1~ * p~2~\^k~2~ *…*p~m~\^k~m~.

Input Specification:

Each input file contains one test case which gives a positive integer N in the range of long int.

Output Specification:

Factor N in the format N = p~1~\^k~1~ * p~2~\^k~2~ *…*p~m~\^k~m~, where p~i~'s are prime factors of N in increasing order, and the exponent k~i~ is the number of p~i~ -- hence when there is only one p~i~, k~i~ is 1 and must NOT be printed out.

Sample Input:

97532468

Sample Output:

97532468=2^2*11*17*101*1291

解答:本题应该算是水题了,只不过要注意N为1的情形。如果N>1,那么可以遍历寻找因子,题目变得简单直观。我也看了其他人的解法,还是觉得自己的解法是很优秀的,哈哈。

AC代码如下:

#include<iostream>
#include<cstdio>
#include<vector>
#include<cmath>

using namespace std;

typedef struct{
	int val;
	int count;
}prime;

int main()
{
	long int N, C;
	vector<prime> primes;
	
	scanf("%d", &N);
	C = N;
	//如果N是1,那么直接输出结果即可。 
	if( N == 1)
	{
		printf("1=1\n"); return 0;
	}
	//寻找因子 
	for(int i = 2; i <= N; ++i)
	{
		prime tmp; tmp.val = i; tmp.count = 0;
		while(N % i == 0 && N != 0)
		{
			tmp.count++;
			N /= i;
		}
		if(tmp.count != 0) primes.push_back(tmp);
		if(N == 0) break;
	}
	//输出结果 
	printf("%d=", C);
	for(int i = 0; i < primes.size(); ++i)
	{
		if(i == 0) 
		{
			if(primes[i].count == 1)
			{
				printf("%d", primes[i].val);
			}
			else
			{
				printf("%d^%d", primes[i].val, primes[i].count);
			}
		}
		else
		{
			if(primes[i].count == 1)
			{
				printf("*%d", primes[i].val);
			}
			else
			{
				printf("*%d^%d", primes[i].val, primes[i].count);
			}
		}
		
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值