SFM(structure-from-motion)实现流程详细介绍

  SFM(structure-from-motion)算法是一种基于各种收集到的无序图片进行三维重建的离线算法。顾名思义是从运动中(不同时间拍摄的图片集)恢复物体的三维结构,这需要估计出图片的R,t,结合相机内参重建稀疏点云。其实现过程如下:

1.特征检测

对于特征检测这一步,使用的是具有尺度和旋转不变性的SIFT描述子,其鲁棒性较强,适合用来提取尺度变换和旋转角度的各种图片特征点信息,其准确性强。

2.特征匹配

匹配和建立track,图像对两两匹配,一般采用欧式距离。当距离小于一定阈值的时候就认为匹配成功,但是误匹配也比较多,需要采取多种手段剔除:

  • 如果最近距离与次近距离的比值大于某个阈值,应该剔除
  • 对匹配点采用采样一致性算法RANSAC八点法计算基础矩阵,剔除不满足基础矩阵的匹配对

3.已知多对匹配点对,求解相机之间的本质矩阵E。

4.R,t求解

本质矩阵分解为R和T(SVD分解),存在4种可能的解,寻找正确的解。

5.三角化

已经知道了两个相机之间的变换矩阵(R和T),还有每一对匹配点的坐标,通过这些已知信息还原匹配点在空间当中的坐标

6.计算第三个摄像机到到世界坐标系的变换矩阵(R和T)

问题1:如果沿用双目重建的方法,即在第三幅图像和第一幅图像之间提取特征点,那么加入第四幅、第五幅,乃至更多呢?随着图像数量的增加,新加入的图像与第一幅图像的差异可能越来越大,特征点的提取变得异常困难。

问题2:如果用新加入的图像和相邻图像进行特征匹配呢,比如第三幅与第二幅匹配,第四幅与第三幅匹配,然后间接求得与第一幅的变换。但通过这种方式,你只能求出相机三到相机一的旋转变换(旋转矩阵R),而他们之间的位移向量T,是无法求出的。这是因为上面两个函数求出的位移向量,都是单位向量,丢失了相机之间位移的比例关系

解决办法:首先,使用双目重建的方法,对头两幅图像进行重建,这样就得到了一些空间中的点,加入第三幅图像后,使其与第二幅图像进行特征匹配,这些匹配点中,肯定有一部分也是图像二与图像一之间的匹配点,也就是说,这些匹配点中有一部分的空间坐标是已知的,同时又知道这些点在第三幅图像中的像素坐标,就可以求解PnP了,然后就可以得到第三个相机的空间位置。由于空间点的坐标都是世界坐标系下的(即第一个相机的坐标系),所以由solvePnP求出的相机位置也是世界坐标系下的,即相机三到相机一的变换矩阵。

7.加入更多图像

通过上面的方法得到相机三的变换矩阵后,就可以对图像三和图像二之间的匹配点三角化,得到其空间坐标。为了使之后的图像仍能使用以上方法求解变换矩阵,我们还需要将新得到的空间点和之前的三维点云融合。已经存在的空间点,就没必要再添加了,只添加在图像二和三之间匹配,但在图像一和图像三中没有匹配的点。如此反复。
在这里插入图片描述

参考:
https://blog.youkuaiyun.com/lpj822/article/details/82716971
https://blog.youkuaiyun.com/qq_42399848/article/details/89348740
https://blog.youkuaiyun.com/u014636245/article/details/77527627
https://blog.youkuaiyun.com/qq_33826977/article/details/79834735

地形数据测量是许多地貌研究应用程序的基本方面,尤其是那些包括地形监测和地形变化研究的应用程序。然而,大多数测量技术需要相对昂贵的技术或专门的用户监督。 MotionSfM)摄影测量技术的结构通过允许使用消费级数码相机和高度自动化的数据处理(可以免费使用)减少了这两个限制。因此,SfM摄影测量法提供了快速,自动化和低成本获取3D数据的可能性,这不可避免地引起了地貌界的极大兴趣。在此贡献中,介绍SfM摄影测量的基本概念,同时也承认了其传统。举几个例子来说明SfM在地貌研究中的应用潜力。特别是,SfM摄影测量为地貌学家提供了一种工具,用于在一定范围内对3-D形式进行高分辨率表征,并用于变化检测。 SfM数据处理的高度自动化既创造了机遇,也带来了威胁,特别是因为用户控制倾向于将重点放在最终产品的可视化上,而不是固有的数据质量上。因此,这项贡献旨在指导潜在的新用户成功地将SfM应用于一系列地貌研究。 关键词:运动结构,近距离摄影测量,智能手机技术,测量系统,表面形态echnology reduces both these constraints by allowing the use of consumer grade digital cameras and highly automated data processing, which can be free to use. SfM photogrammetry therefore offers the possibility of fast, automated and low-cost acquisition of 3-D data, which has inevitably created great interest amongst the geomorphological community. In this contribution, the basic concepts of SfM photogrammetry are presented, whilst recognising its heritage. A few examples are employed to illustrate the potential of SfM applications for geomorphological research. In particular, SfM photogrammetry offers to geomorphologists a tool for high-resolution characterisation of 3-D forms at a range of scales and for change detection purposes. The high level of automation of SfM data processing creates both opportunities and threats, particularly because user control tends to focus upon visualisation of the final product rather than upon inherent data quality. Accordingly, this contribution seeks to guide potential new users in successfully applying SfM for a range of geomorphic studies.
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jenkinwey

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值