7. 镜面网格

文章讲述了在一个给定的正方形网格中,通过最少的操作次数使其在旋转0°、90°、180°和270°时保持不变,关键在于找出关于中心对称的四个点上数字的对齐策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

E . 镜面网格 E.镜面网格 E.镜面网格 每次测试时限: 2 秒 每次测试时限:2 秒 每次测试时限:2 每次测试的内存限制: 256 兆字节 每次测试的内存限制:256 兆字节 每次测试的内存限制:256兆字节


题目描述

给你一个有 n n n 行和 n n n 列的正方形网格。每个单元格包含 0 0 0 1 1 1

在操作中,您可以选择网格中的一个单元格并翻转它(从 0 → 1 0 \to 1 01 1 → 0 1 \to 0 10 )。请计算要得到一个在旋转 0 ∘ 0^{\circ} 0 9 0 ∘ 90^{\circ} 90 18 0 ∘ 180^{\circ} 180 27 0 ∘ 270^{\circ} 270 时保持不变的正方形所需的最少运算次数。

下图是一个网格旋转的例子。


输入

第一行包含一个整数 t t t ( 1 ≤ t ≤ 100 1 \leq t \leq 100 1t100 ) - 测试用例的数量。

每个测试用例的第一行包含一个整数 n n n ( 1 ≤ n ≤ 100 1 \leq n \leq 100 1n100 ) - 网格大小。

然后是 n n n 行,每行包含 n n n 个字符 a i , j a_{i,j} ai,j ( 0 ≤ a i , j ≤ 1 0 \leq a_{i,j} \leq 1 0ai,j1 ) - 写在每个单元格中的数字。


输出

对于每个测试用例,输出一个整数 - 使旋转后的正方形看起来与 0 ∘ 0^{\circ} 0 9 0 ∘ 90^{\circ} 90 18 0 ∘ 180^{\circ} 180 27 0 ∘ 270^{\circ} 270 相同所需的最少操作数。


代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7; 
const int N = 100010;

char a[110][110];

int main()
{
    int t; cin>>t;
    while(t--)
    {
        int n; cin>>n;
        for(int i=1;i<=n;i++)scanf("%s",a[i]+1);

        int ans=0;
        int hhh=n-1;
        for(int i=1;i<=n;i++)
        {
            for(int j=i;j<=hhh;j++)
            {
                int ii=n+1-i; int jj=n+1-j;
                int l0=0; int l1=0;

                if(a[i][j]=='0')l0++;
                else l1++;
                
                if(a[ii][jj]=='0')l0++;
                else l1++;

                if(a[jj][i]=='0')l0++;
                else l1++;

                if(a[j][ii]=='0')l0++;
                else l1++;
                
                if(l0==3)ans++;
                if(l0==2)ans+=2;
                if(l0==1)ans++;
            }
            hhh--;
        }
        cout<<ans<<endl;
    }
    return 0;
}

解题思路:如果想要一个 N ∗ N N*N NN 的正方形矩阵在旋转 0 ∘ 0^{\circ} 0 9 0 ∘ 90^{\circ} 90 18 0 ∘ 180^{\circ} 180 27 0 ∘ 270^{\circ} 270 时保持不变,那么这个矩阵中的每组关于中心对称的四个点上的数字都得一模一样才行,而枚举每组关于中心对称的四个点的方式为从外到内的一圈一圈的枚举。

如何根据关于中心对称的四个点中的其中一个点的坐标来推出另外三个点的坐标呢?方法如下图所示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

古葬

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值