SDUT 4059 暴力打表 最近打比赛深受暴力打表荼毒,哪个题都想暴力打个表

本文介绍了一种通过预先计算并存储所有可能结果的方法来解决一类特定数论问题的编程思路。这种方法首先通过一个判断素数的函数确定输入是否为素数,接着使用另一个函数计算特定条件下整数n的平方除以7的余数的幂次表达式的最终结果。通过这种方式,可以在实际运行时快速查找答案,避免了复杂的实时计算。

题目链接
思想:暴力打表,意思就是用最简单的思想花费较长的时间先把题目出现的所有情况的数据结果存下来,然后写程序的时候把所有可能的情况存在一个数组中,直接访问数组输出。

# include <stdio.h>
# include <math.h>
# include <iostream>
# define MAXN 10000+10
using namespace std;
bool judge(int n)
{
    if(n==0||n==1)
        return false;
    for(int i=2; i<=sqrt(n); i++)
    {
        if(n%i==0)
            return false;
    }
    return true;
}
int zhao(int n)
{
    double a=n*n/7.0;
    int t=(int)a;
    int ans=1;
    for(int i=1; i<=t; i++)
    {
        ans=(ans%7)*(n%7)%7;
    }
    return ans;
}
int main()
{
//  FILE *fp=fopen("D://data.txt","w");
//    for(int i=1;i<=10000;i++)
//    {
//        int t;
//        if(judge(i))
//            t=zhao(i);
//        else
//            t=0;
//        fprintf(fp,"%d,",t);
//        if(i%10==0)
//            fprintf(fp,"\n");
//    }
    int data[MAXN]=
    {
        0,1,3,0,6,0,0,0,0,0,
        2,0,1,0,0,0,5,0,6,0,
        0,0,1,0,0,0,0,0,1,0,
        5,0,0,0,0,0,1,0,0,0,
        1,0,1,0,0,0,6,0,0,0,
        0,0,2,0,0,0,0,0,5,0,
        6,0,0,0,0,0,2,0,0,0,
        1,0,5,0,0,0,0,0,1,0,
        0,0,1,0,0,0,0,0,6,0,
        0,0,0,0,0,0,1,0,0,0,
        5,0,6,0,0,0,1,0,2,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        6,0,0,0,0,0,2,0,1,0,
        0,0,0,0,0,0,0,0,1,0,
        2,0,0,0,0,0,5,0,0,0,
        0,0,1,0,0,0,1,0,0,0,
        0,0,6,0,0,0,0,0,2,0,
        1,0,0,0,0,0,0,0,0,0,
        1,0,2,0,0,0,1,0,5,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,5,0,6,0,
        0,0,1,0,0,0,0,0,1,0,
        5,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,6,0,0,0,
        0,0,2,0,0,0,0,0,5,0,
        6,0,0,0,0,0,2,0,0,0,
        1,0,5,0,0,0,0,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        5,0,6,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,2,0,1,0,
        0,0,5,0,0,0,0,0,1,0,
        0,0,0,0,0,0,5,0,0,0,
        0,0,1,0,0,0,0,0,1,0,
        0,0,6,0,0,0,0,0,2,0,
        0,0,0,0,0,0,6,0,0,0,
        1,0,0,0,0,0,0,0,5,0,
        0,0,0,0,0,0,0,0,1,0,
        1,0,0,0,0,0,0,0,0,0,
        2,0,1,0,0,0,0,0,6,0,
        0,0,1,0,0,0,0,0,1,0,
        0,0,0,0,0,0,1,0,0,0,
        1,0,1,0,0,0,6,0,0,0,
        0,0,0,0,0,0,0,0,5,0,
        0,0,0,0,0,0,2,0,0,0,
        1,0,0,0,0,0,0,0,1,0,
        0,0,1,0,0,0,0,0,6,0,
        0,0,0,0,0,0,0,0,0,0,
        5,0,6,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,2,0,0,0,
        0,0,5,0,0,0,0,0,1,0,
        2,0,0,0,0,0,5,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,6,0,0,0,0,0,2,0,
        1,0,0,0,0,0,6,0,0,0,
        0,0,2,0,0,0,1,0,5,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        2,0,1,0,0,0,5,0,0,0,
        0,0,1,0,0,0,0,0,1,0,
        5,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,6,0,0,0,
        0,0,2,0,0,0,0,0,0,0,
        6,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,6,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,6,0,0,0,0,0,2,0,
        0,0,1,0,0,0,0,0,0,0,
        1,0,0,0,0,0,1,0,0,0,
        6,0,0,0,0,0,0,0,1,0,
        0,0,5,0,0,0,0,0,0,0,
        0,0,0,0,0,0,5,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,2,0,
        1,0,0,0,0,0,0,0,0,0,
        1,0,2,0,0,0,1,0,5,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,5,0,6,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        1,0,1,0,0,0,6,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,2,0,0,0,
        1,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,6,0,
        0,0,0,0,0,0,1,0,0,0,
        5,0,0,0,0,0,1,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        6,0,0,0,0,0,2,0,0,0,
        0,0,5,0,0,0,0,0,0,0,
        2,0,0,0,0,0,5,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,6,0,0,0,0,0,2,0,
        1,0,0,0,0,0,0,0,0,0,
        1,0,2,0,0,0,0,0,5,0,
        0,0,0,0,0,0,0,0,1,0,
        1,0,0,0,0,0,0,0,0,0,
        2,0,1,0,0,0,0,0,6,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        1,0,1,0,0,0,6,0,0,0,
        0,0,2,0,0,0,0,0,5,0,
        0,0,0,0,0,0,2,0,0,0,
        0,0,5,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        5,0,6,0,0,0,0,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        6,0,0,0,0,0,2,0,0,0,
        0,0,5,0,0,0,0,0,0,0,
        2,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,1,0,0,0,
        0,0,6,0,0,0,0,0,2,0,
        1,0,0,0,0,0,6,0,0,0,
        0,0,0,0,0,0,0,0,5,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,5,0,6,0,
        0,0,1,0,0,0,0,0,1,0,
        5,0,0,0,0,0,1,0,0,0,
        1,0,1,0,0,0,6,0,0,0,
        0,0,0,0,0,0,0,0,5,0,
        6,0,0,0,0,0,2,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        5,0,0,0,0,0,1,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,1,0,1,0,
        0,0,6,0,0,0,0,0,2,0,
        0,0,0,0,0,0,6,0,0,0,
        1,0,2,0,0,0,0,0,5,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        2,0,1,0,0,0,5,0,6,0,
        0,0,1,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,2,0,0,0,0,0,0,0,
        6,0,0,0,0,0,0,0,0,0,
        0,0,5,0,0,0,0,0,1,0,
        0,0,1,0,0,0,0,0,6,0,
        0,0,0,0,0,0,1,0,0,0,
        5,0,0,0,0,0,0,0,2,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        6,0,0,0,0,0,2,0,1,0,
        0,0,5,0,0,0,0,0,1,0,
        2,0,0,0,0,0,5,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,6,0,0,0,
        0,0,2,0,0,0,1,0,5,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,5,0,6,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,1,0,0,0,0,0,0,0,
        0,0,2,0,0,0,0,0,0,0,
        6,0,0,0,0,0,2,0,0,0,
        0,0,5,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,6,0,0,0,1,0,2,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        6,0,0,0,0,0,0,0,0,0,
        0,0,5,0,0,0,0,0,0,0,
        2,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,6,0,0,0,
        1,0,2,0,0,0,1,0,5,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        2,0,0,0,0,0,5,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,5,0,
        6,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,0,0,6,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,6,0,0,0,1,0,2,0,
        0,0,1,0,0,0,0,0,0,0,
        1,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,2,0,1,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,6,0,0,0,0,0,2,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,2,0,0,0,1,0,5,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        2,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        5,0,0,0,0,0,1,0,0,0,
        1,0,1,0,0,0,0,0,0,0,
        0,0,2,0,0,0,0,0,0,0,
        6,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,6,0,0,0,1,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,2,0,1,0,
        0,0,5,0,0,0,0,0,0,0,
        2,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,1,0,
        0,0,6,0,0,0,0,0,0,0,
        1,0,0,0,0,0,6,0,0,0,
        0,0,2,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,0,0,1,0,
        5,0,0,0,0,0,1,0,0,0,
        1,0,0,0,0,0,6,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        6,0,0,0,0,0,2,0,0,0,
        1,0,5,0,0,0,0,0,1,0,
        0,0,1,0,0,0,0,0,6,0,
        0,0,0,0,0,0,0,0,0,0,
        5,0,0,0,0,0,1,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        6,0,0,0,0,0,2,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,5,0,0,0,
        0,0,1,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,2,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        2,0,0,0,0,0,0,0,6,0,
        0,0,1,0,0,0,0,0,1,0,
        5,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,5,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,5,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,6,0,
        0,0,0,0,0,0,1,0,0,0,
        5,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,2,0,1,0,
        0,0,5,0,0,0,0,0,0,0,
        2,0,0,0,0,0,5,0,0,0,
        0,0,1,0,0,0,1,0,1,0,
        0,0,6,0,0,0,0,0,2,0,
        0,0,0,0,0,0,6,0,0,0,
        1,0,2,0,0,0,0,0,5,0,
        0,0,0,0,0,0,0,0,1,0,
        1,0,0,0,0,0,0,0,0,0,
        2,0,0,0,0,0,0,0,6,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,6,0,0,0,
        0,0,0,0,0,0,0,0,5,0,
        6,0,0,0,0,0,2,0,0,0,
        1,0,5,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,6,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,6,0,0,0,1,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        1,0,0,0,0,0,1,0,0,0,
        6,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,5,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,6,0,0,0,0,0,2,0,
        0,0,0,0,0,0,6,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,5,0,0,0,
        0,0,1,0,0,0,0,0,1,0,
        5,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,5,0,
        6,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,1,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        5,0,0,0,0,0,0,0,2,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,5,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,2,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,5,0,6,0,
        0,0,0,0,0,0,0,0,0,0,
        5,0,0,0,0,0,1,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,2,0,0,0,0,0,5,0,
        0,0,0,0,0,0,2,0,0,0,
        1,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        5,0,6,0,0,0,1,0,2,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        2,0,0,0,0,0,5,0,0,0,
        0,0,1,0,0,0,0,0,1,0,
        0,0,6,0,0,0,0,0,2,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,2,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        1,0,0,0,0,0,0,0,0,0,
        2,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        5,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,6,0,0,0,
        0,0,2,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,5,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,6,0,
        0,0,0,0,0,0,1,0,0,0,
        5,0,6,0,0,0,1,0,2,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        6,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        2,0,0,0,0,0,5,0,0,0,
        0,0,0,0,0,0,1,0,1,0,
        0,0,6,0,0,0,0,0,2,0,
        1,0,0,0,0,0,6,0,0,0,
        0,0,0,0,0,0,1,0,5,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        2,0,1,0,0,0,0,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,1,0,0,0,6,0,0,0,
        0,0,2,0,0,0,0,0,0,0,
        6,0,0,0,0,0,2,0,0,0,
        0,0,5,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,6,0,
        0,0,0,0,0,0,0,0,0,0,
        5,0,6,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,1,0,0,0,
        6,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,5,0,0,0,
        0,0,1,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,1,0,5,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,5,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,1,0,0,0,0,0,0,0,
        0,0,2,0,0,0,0,0,0,0,
        0,0,0,0,0,0,2,0,0,0,
        1,0,5,0,0,0,0,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        5,0,0,0,0,0,0,0,2,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        6,0,0,0,0,0,2,0,1,0,
        0,0,5,0,0,0,0,0,1,0,
        2,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,6,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        2,0,1,0,0,0,5,0,0,0,
        0,0,1,0,0,0,0,0,1,0,
        5,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,5,0,
        6,0,0,0,0,0,2,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,0,0,6,0,
        0,0,0,0,0,0,0,0,0,0,
        5,0,6,0,0,0,0,0,2,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,2,0,1,0,
        0,0,5,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,1,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,6,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        2,0,0,0,0,0,5,0,6,0,
        0,0,0,0,0,0,0,0,1,0,
        5,0,0,0,0,0,0,0,0,0,
        1,0,1,0,0,0,0,0,0,0,
        0,0,2,0,0,0,0,0,5,0,
        6,0,0,0,0,0,0,0,0,0,
        1,0,5,0,0,0,0,0,0,0,
        0,0,1,0,0,0,0,0,6,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,2,0,1,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,5,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,6,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        2,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        5,0,0,0,0,0,1,0,0,0,
        1,0,0,0,0,0,6,0,0,0,
        0,0,2,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,5,0,0,0,0,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,6,0,0,0,1,0,2,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,2,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        2,0,0,0,0,0,5,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,6,0,0,0,0,0,0,0,
        1,0,0,0,0,0,6,0,0,0,
        0,0,2,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,5,0,6,0,
        0,0,1,0,0,0,0,0,1,0,
        5,0,0,0,0,0,1,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,2,0,0,0,0,0,5,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        5,0,6,0,0,0,0,0,2,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        6,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,1,0,1,0,
        0,0,6,0,0,0,0,0,2,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,2,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        5,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,6,0,0,0,
        0,0,0,0,0,0,0,0,5,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,5,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,6,0,
        0,0,0,0,0,0,0,0,0,0,
        5,0,6,0,0,0,1,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        1,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,2,0,1,0,
        0,0,5,0,0,0,0,0,0,0,
        0,0,0,0,0,0,5,0,0,0,
        0,0,1,0,0,0,0,0,1,0,
        0,0,6,0,0,0,0,0,2,0,
        1,0,0,0,0,0,0,0,0,0,
        1,0,2,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        2,0,0,0,0,0,0,0,6,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        1,0,0,0,0,0,6,0,0,0,
        0,0,0,0,0,0,0,0,5,0,
        6,0,0,0,0,0,2,0,0,0,
        0,0,5,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        6,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,5,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,6,0,0,0,
        1,0,2,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        2,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,0,0,1,0,
        5,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,6,0,0,0,
        0,0,2,0,0,0,0,0,5,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,5,0,0,0,0,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        5,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        6,0,0,0,0,0,2,0,0,0,
        0,0,5,0,0,0,0,0,1,0,
        0,0,0,0,0,0,5,0,0,0,
        0,0,1,0,0,0,1,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,6,0,0,0,
        1,0,2,0,0,0,0,0,5,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        2,0,0,0,0,0,5,0,6,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,1,0,0,0,6,0,0,0,
        0,0,0,0,0,0,0,0,5,0,
        6,0,0,0,0,0,2,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,6,0,0,0,0,0,2,0,
        0,0,1,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        6,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,2,0,
        1,0,0,0,0,0,6,0,0,0,
        1,0,2,0,0,0,1,0,5,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,0,0,6,0,
        0,0,1,0,0,0,0,0,0,0,
        5,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,6,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,2,0,0,0,
        1,0,5,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,2,0,
        0,0,1,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        6,0,0,0,0,0,2,0,0,0,
        0,0,5,0,0,0,0,0,0,0,
        2,0,0,0,0,0,5,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,6,0,0,0,0,0,2,0,
        1,0,0,0,0,0,6,0,0,0,
        1,0,0,0,0,0,1,0,5,0,
        0,0,0,0,0,0,0,0,1,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,5,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,6,0,0,0,
        0,0,0,0,0,0,0,0,5,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,5,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        5,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        6,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,5,0,0,0,
        0,0,1,0,0,0,1,0,0,0,
        0,0,6,0,0,0,0,0,0,0,
        0,0,0,0,0,0,6,0,0,0,
        0,0,2,0,0,0,0,0,5,0,
        0,0,0,0,0,0,0,0,1,0,
        1,0,0,0,0,0,0,0,0,0,
        2,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        5,0,0,0,0,0,0,0,0,0,
        1,0,1,0,0,0,0,0,0,0,
        0,0,2,0,0,0,0,0,0,0,
        6,0,0,0,0,0,0,0,0,0,
        0,0,5,0,0,0,0,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,2,0,
        0,0,1,0,0,0,0,0,0,0,
        1,0,0,0,0,0,1,0,0,0,
        6,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,5,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,6,0,0,0,0,0,2,0,
        1,0,0,0,0,0,6,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        1,0,0,0,0,0,0,0,0,0,
        2,0,0,0,0,0,5,0,0,0,
        0,0,1,0,0,0,0,0,1,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,2,0,0,0,0,0,5,0,
        6,0,0,0,0,0,2,0,0,0,
        0,0,5,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,6,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        2,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,6,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        2,0,0,0,0,0,0,0,6,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        1,0,1,0,0,0,0,0,0,0,
        0,0,2,0,0,0,0,0,5,0,
        6,0,0,0,0,0,2,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,6,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,2,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,5,0,0,0,0,0,1,0,
        2,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,2,0,
        1,0,0,0,0,0,0,0,0,0,
        1,0,2,0,0,0,0,0,5,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,5,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,5,0,
        6,0,0,0,0,0,0,0,0,0,
        1,0,5,0,0,0,0,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,6,0,0,0,1,0,2,0,
        0,0,1,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,2,0,0,0,
        0,0,5,0,0,0,0,0,1,0,
        2,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,2,0,
        0,0,0,0,0,0,6,0,0,0,
        1,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,5,0,6,0,
        0,0,0,0,0,0,0,0,1,0,
        5,0,0,0,0,0,1,0,0,0,
        1,0,0,0,0,0,6,0,0,0,
        0,0,2,0,0,0,0,0,0,0,
        6,0,0,0,0,0,2,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,0,0,6,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,2,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,6,0,0,0,0,0,2,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,1,0,5,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        2,0,0,0,0,0,0,0,6,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,6,0,0,0,
        0,0,2,0,0,0,0,0,0,0,
        0,0,0,0,0,0,2,0,0,0,
        1,0,5,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,6,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,6,0,0,0,1,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,5,0,0,0,0,0,0,0,
        0,0,0,0,0,0,5,0,0,0,
        0,0,0,0,0,0,1,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        1,0,2,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,6,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        6,0,0,0,0,0,2,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        5,0,0,0,0,0,1,0,2,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        6,0,0,0,0,0,2,0,1,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,5,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,6,0,0,0,0,0,2,0,
        0,0,0,0,0,0,6,0,0,0,
        1,0,0,0,0,0,1,0,5,0,
        0,0,0,0,0,0,0,0,1,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,5,0,0,0,
        0,0,1,0,0,0,0,0,1,0,
        5,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,6,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        6,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,1,0,0,0,0,0,6,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,2,0,
        0,0,1,0,0,0,0,0,0,0,
        1,0,0,0,0,0,1,0,0,0,
        6,0,0,0,0,0,0,0,1,0,
        0,0,5,0,0,0,0,0,0,0,
        0,0,0,0,0,0,5,0,0,0,
        0,0,1,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,2,0,0,0,1,0,5,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,6,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,6,0,0,0,
        0,0,2,0,0,0,0,0,5,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,6,0,0,0,1,0,2,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        6,0,0,0,0,0,2,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,5,0,0,0,
        0,0,1,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,2,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,2,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        5,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,5,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,5,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,6,0,
        0,0,0,0,0,0,0,0,0,0,
        5,0,0,0,0,0,1,0,2,0,
        0,0,1,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        6,0,0,0,0,0,2,0,0,0,
        0,0,5,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,6,0,0,0,
        1,0,0,0,0,0,0,0,5,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,6,0,
        0,0,0,0,0,0,0,0,1,0,
        5,0,0,0,0,0,0,0,0,0,
        1,0,1,0,0,0,6,0,0,0,
        0,0,2,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,5,0,0,0,0,0,1,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        5,0,6,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,6,0,0,0,0,0,2,0,
        0,0,0,0,0,0,6,0,0,0,
        0,0,0,0,0,0,1,0,5,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,6,0,
        0,0,1,0,0,0,0,0,1,0,
        5,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,6,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        6,0,0,0,0,0,2,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        5,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        1,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,2,0,1,0,
        0,0,5,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,6,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,5,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,5,0,6,0,
        0,0,0,0,0,0,0,0,0,0,
        5,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,2,0,0,0,0,0,5,0,
        0,0,0,0,0,0,2,0,0,0,
        1,0,0,0,0,0,0,0,1,0,
        0,0,1,0,0,0,0,0,6,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,6,0,0,0,0,0,2,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,1,0,0,0,
        6,0,0,0,0,0,2,0,0,0,
        0,0,5,0,0,0,0,0,0,0,
        2,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,6,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,2,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        1,0,0,0,0,0,0,0,0,0,
        2,0,0,0,0,0,5,0,6,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,1,0,0,0,6,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,2,0,0,0,
        0,0,5,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,6,0,0,0,0,0,2,0,
        0,0,1,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        6,0,0,0,0,0,0,0,0,0,
        0,0,5,0,0,0,0,0,1,0,
        2,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,2,0,
        1,0,0,0,0,0,6,0,0,0,
        1,0,2,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        2,0,1,0,0,0,0,0,6,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        6,0,0,0,0,0,0,0,0,0,
        0,0,5,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,6,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,1,0,0,0,
        6,0,0,0,0,0,0,0,0,0,
        0,0,5,0,0,0,0,0,0,0,
        2,0,0,0,0,0,5,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,6,0,0,0,0,0,2,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,5,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        1,0,1,0,0,0,0,0,0,0,
        0,0,2,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,1,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        5,0,6,0,0,0,0,0,2,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        6,0,0,0,0,0,2,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        2,0,0,0,0,0,5,0,0,0,
        0,0,1,0,0,0,0,0,0,0,
        0,0,6,0,0,0,0,0,2,0,
        1,0,0,0,0,0,0,0,0,0,
        1,0,2,0,0,0,1,0,5,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        2,0,1,0,0,0,5,0,0,0,
        0,0,1,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,6,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        6,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,0,0,6,0,
        0,0,0,0,0,0,1,0,0,0,
        5,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,2,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        2,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,0,0,1,0,
        0,0,6,0,0,0,0,0,2,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,2,0,0,0,0,0,5,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,5,0,6,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,5,0,
        6,0,0,0,0,0,0,0,0,0,
        0,0,5,0,0,0,0,0,1,0,
        0,0,1,0,0,0,0,0,6,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,2,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,1,0,0,0,
        6,0,0,0,0,0,0,0,0,0,
        0,0,5,0,0,0,0,0,0,0,
        2,0,0,0,0,0,5,0,0,0,
        0,0,0,0,0,0,0,0,1,0,
        0,0,6,0,0,0,0,0,2,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,1,0,5,0,
        0,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,0,0,
        0,0,1,0,0,0,5,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        5,0,0,0,0,0,1,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,2,0,0,0,0,0,5,0,
        6,0,0,0,0,0,0,0,0,0,
        1,0,0,0,0,0,0,0,1,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,1,0,0,0,
        0,0,6,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,0,0
    };
    int l, r;
    cin>>l>>r;
    int sum=0;
    for(int i=l; i<=r; i++)
    {
        sum=(sum%7+data[i-1]%7)%7;
    }
    cout<<sum<<endl;
    return 1;
}
【电力系统】单机无穷大电力系统短路故障暂态稳定Simulink仿真(带说明文档)内容概要:本文档围绕“单机无穷大电力系统短路故障暂态稳定Simulink仿真”展开,提供了完整的仿真模型与说明文档,重点研究电力系统在发生短路故障后的暂态稳定性问。通过Simulink搭建单机无穷大系统模型,模拟不同类型的短路故障(如三相短路),分析系统在故障期间及切除后的动态响应,包括发电机转子角度、转速、电压和功率等关键参数的变化,进而评估系统的暂态稳定能力。该仿真有助于理解电力系统稳定性机理,掌握暂态过程分析方法。; 适合人群:电气工程及相关专业的本科生、研究生,以及从事电力系统分析、运行与控制工作的科研人员和工程师。; 使用场景及目标:①学习电力系统暂态稳定的基本概念与分析方法;②掌握利用Simulink进行电力系统建模与仿真的技能;③研究短路故障对系统稳定性的影响及提高稳定性的措施(如故障清除时间优化);④辅助课程设计、毕业设计或科研项目中的系统仿真验证。; 阅读建议:建议结合电力系统稳定性理论知识进行学习,先理解仿真模型各模块的功能与参数设置,再运行仿真并仔细分析输出结果,尝试改变故障类型或系统参数以观察其对稳定性的影响,从而深化对暂态稳定问的理解。
本研究聚焦于运用MATLAB平台,将支持向量机(SVM)应用于数据预测任务,并引入粒子群优化(PSO)算法对模型的关键参数进行自动调优。该研究属于机器学习领域的典型实践,其核心在于利用SVM构建分类模型,同时借助PSO的全局搜索能力,高效确定SVM的最优超参数配置,从而显著增强模型的整体预测效能。 支持向量机作为一种经典的监督学习方法,其基本原理是通过在高维特征空间中构造一个具有最大间隔的决策边界,以实现对样本数据的分类或回归分析。该算法擅长处理小规模样本集、非线性关系以及高维度特征识别问,其有效性源于通过核函数将原始数据映射至更高维的空间,使得原本复杂的分类问变得线性可分。 粒子群优化算法是一种模拟鸟群社会行为的群体智能优化技术。在该算法框架下,每个潜在解被视作一个“粒子”,粒子群在解空间中协同搜索,通过不断迭代更新自身速度与位置,并参考个体历史最优解和群体全局最优解的信息,逐步逼近问的最优解。在本应用中,PSO被专门用于搜寻SVM中影响模型性能的两个关键参数——正则化参数C与核函数参数γ的最优组合。 项目所提供的实现代码涵盖了从数据加载、预处理(如标准化处理)、基础SVM模型构建到PSO优化流程的完整步骤。优化过程会针对不同的核函数(例如线性核、多项式核及径向基函数核等)进行参数寻优,并系统评估优化前后模型性能的差异。性能对比通常基于准确率、精确率、召回率及F1分数等多项分类指标展开,从而定量验证PSO算法在提升SVM模型分类能力方面的实际效果。 本研究通过一个具体的MATLAB实现案例,旨在演示如何将全局优化算法与机器学习模型相结合,以解决模型参数选择这一关键问。通过此实践,研究者不仅能够深入理解SVM的工作原理,还能掌握利用智能优化技术提升模型泛化性能的有效方法,这对于机器学习在实际问中的应用具有重要的参考价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
### 山东理工大学 SDUT 数据结构 PTA 平台链练习资源 #### 关于线性的操作实践 在山东理工大学的数据结构课程中,通过PTA平台进行的线性操作实践旨在帮助学生掌握线性的基础理论及其应用技巧。具体来说,在实验过程中会涉及到对顺序的理解以及如何保持其有序性的插入操作[^1]。 对于给定的一个已经按照递增顺序排列好的顺序`L`,如果要将新元素`X`加入其中而不破坏原有的升序关系,则需要遍历整个列找到合适的位置完成插入动作。这不仅考察了学员们对于基本概念如逻辑结构、物理示法等方面的知识水平;同时也锻炼到了编程能力——特别是针对数组这种静态分配内存空间所构建出来的线性实施有效算法设计的能力。 #### 创建逆序链实例分析 另一个值得注意的例子是在处理动态链接存储方式下的线性集合时遇到的任务:创建一个以相反次序保存输入序列的新单向连接串行组。此过程由名为`createlist`的过程负责执行,它持续接收来自标准输入流中的正值直到遇见终止符(-1),随后依据接收到数值反向组建起始端点指向最终添加项的一系列节点组成的链条[^2]。 ```c typedef struct Node { int data; struct Node *next; } ListNode; ListNode* createlist() { int value; ListNode *head = NULL, *current = NULL; while(scanf("%d", &value), value != -1){ ListNode *newNode = (ListNode *)malloc(sizeof(ListNode)); newNode->data = value; newNode->next = head; head = newNode; } return head; } ``` 这段C语言代码展示了怎样实现上述功能,每次读取一个新的整数就将其作为新的头部来更新现有的链,从而自然形成了原始输入序列反转后的效果。 #### 单向链状态变化模拟 考虑到更复杂的场景,比如在一个原本存在的简单无环路路径上执行入队与出队两种不同类型的修改行为之后观察整体形态的变化情况。假设最开始有一个仅含三个成员{1 -> 2 -> 3}的小型队伍,当有第四个参与者4请求加入并且被安排到最后面形成扩展版图景{1 -> 2 -> 3 -> 4}; 接着首位队员离开后留下来的布局变成了{2 -> 3 -> 4}[^3]。 这些例子充分体现了通过对实际问建模并借助计算机程序求解的方式加深理解和记忆重要知识点的有效方法论价值所在。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值