JAVA虚拟机JVM 3

垃圾回收器

垃圾回收器介绍

如果说收集算法是内存回收的方法论,那垃圾收集器就是内存回收的实践者。《Java虚拟机规范》中对垃圾收集器应该如何实现并没有做 出任何规定,因此不同的厂商、不同版本的虚拟机所包含的垃圾收集器 都可能会有很大差别,不同的虚拟机一般也都会提供各种参数供用户根据自己的应用特点和要求组合出各个内存分代所使用的收集器。

各款经典收集器之间的关系如下图所示:
在这里插入图片描述
上图展示了7种作用于不同分代的收集器,如果两个收集器之间存在连线,就说明他们之间可以搭配使
用。所处的区域,表示它是属于新生代收集器还是老年代收集器。在讲具体的收集器之前我们先来明确三个概念:

  • 并行(Parallel) : 描述的是多条垃圾收集器线程之间的关 系,说明同一时间有多条这样的线程在协同工作,通常默认此时用户线程是处于等待状态。
  • 并发(Concurrent) : 指用户线程与垃圾收集线程同时执行(不一定并行,可能会交替执行),用户程序继续运行,而垃圾收集程序在另外一个CPU上。由于用户线程并未被冻结,所以程序仍然能响应服务请求,但由于垃圾收集器线程占用了一部分系统资源,此时应用程序的处理的吞吐量将受到一定影响。
  • 吞吐量:就是CPU用于运行用户代码的时间与CPU总消耗时间的比值。公式:吞吐量 = 运行用户代码时间 / (运行用户代码时间 + 垃圾收集时间),例如:虚拟机总共运行了100分钟,其中垃圾收集花掉1分钟,那吞吐量就是99%。

Serial收集器(新生代收集器,串行GC)

Serial收集器是最基础、历史最悠久的新生代收集器,这个收集器是一个单线程工作的收集器,但它的“单线程”的意义并不仅仅是说明它只会使用一个处理器或一条收集线程去完成垃圾收集工作,更重要的是强调在它进行垃圾收集时,必须暂停其他所有工作线程,直到它收集结束。随着技术的不断进步,用户线程的停顿时间在持续缩短,但是仍然没有办法彻底消除。

Serial收集器运行示意图:在这里插入图片描述
迄今为止,Serial收集器依然是HotSpot虚拟机运行在客户端模式下的默认新生代收集器,有着优于其他收集器的地方,那就是简单而高效(与其他收集器的单线程相比),对于内存资源受限的环境,它是所有收集器里额外内存消耗最小的;对于单核处理器或处理器核心数较少的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程收集效率。在用户桌面的应用场景以及近年来流行的部分微服务应用中,分配给虚拟机管理的内存一般来说并不会特别大,收集几十兆甚至一两百兆的新生代(仅仅是指新生代使用 的内存,桌面应用甚少超过这个容量),垃圾收集的停顿时间完全可以控制在十几、几十毫秒,最多一百多毫秒以内,只要不是频繁发生收集,这点停顿时间对许多用户来说是完全可以接受的。所以,Serial收集器对于运行在客户端模式下的虚拟机来说是一个很好的选择。

ParNew收集器(新生代收集器,并行GC)

ParNew收集器实质上是Serial收集器的多线程并行版本,除了同时使用多条线程进行垃圾收集之外,其余的行为包括Serial收集器可用的所有控制参数、收集算法、Stop The World、对象分配规则、回收策略等都与Serial收集器完全 一致,在实现上这两种收集器也共用了相当多的代码。

ParNew收集器的运行示意图如下图所示:
在这里插入图片描述
ParNew收集器是许多运行在Server模式下的虚拟机中首选的新生代收集器。作为Server的首选收集器之中有一个与性能无关的很重要的原因是:除了Serial收集器外,目前只有它能与CMS收集器配合工作

CMS作为老年代的收集器,却无法与JDK 4中已经存在的新生代收集器Parallel Scavenge配合工作,所以在JDK 5中使用 CMS来收集老年代的时候,新生代只能选择ParNew或者Serial收集器中 的一个。ParNew收集器是激活CMS后(使用-XX:+Use-ConcMark-Sweep-GC选项)的默认新生代收集器,也可以使用- XX:+/-UseParNewGC选项来强制指定或者禁用它。可以说直到CMS的出现才巩固了ParNew的地位。

与Serial收集器对比:
ParNew收集器在单CPU的环境中绝对不会有比Serial收集器更好的效果,甚至由于存在线程交互的开销,该收集器在通过超线程技术实现的两个CPU的环境中都不能百分之百地保证可以超越Serial收集器。然而,随着可以使用的CPU的数量的增加,它对于GC时系统资源的有效利用还是很有好处的。

Parallel Scavenge收集器(新生代收集器,并行GC)

Parallel Scavenge收集器的特点是它的关注点与其他收集器不同, CMS等收集器的关注点是尽可能地缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标则是达到一个可控制的吞吐量 (Throughput)。

我们知道,停顿时间越短就越适合需要与用户交互或需要保证服务响应质量的程序,良好的响应速度能提升用户体验;而高吞吐量则可以最高效率地利用处理器资源,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的分析任务。

Parallel Scavenge收集器提供了两个参数用于精确控制吞吐量,分别是控制最大垃圾收集停顿时间的-XX:MaxGCPauseMillis参数以及直接设置吞吐量大小的-XX:GCTimeRatio参数。

  1. -XX:MaxGCPauseMillis参数允许的值是一个大于0的毫秒数,收集器将尽力保证内存回收花费的时间不超过用户设定值。不过大家不要异想天开地认为如果把这个参数的值设置得更小一点就能使得系统的垃圾收集速度变得更快,垃圾收集停顿时间缩短是以牺牲吞吐量和新生代空间为代价换取的:系统把新生代调得小一些,收集300MB新生代肯定比收集500MB快,但这也直接导致垃圾收集发生得更频繁,原来10秒收集一次、每次停顿100毫秒,现在变成5秒收集一次、每次停顿70毫秒。停顿时间的确在下降,但吞吐量也降下来了。
  2. -XX:GCTimeRatio参数的值则应当是一个大于0小于100的整数, 也就是垃圾收集时间占总时间的比率,相当于吞吐量的倒数。譬如把此参数设置为19,那允许的最大垃圾收集时间就占总时间的5%(即 1/(1+19)),默认值为99,即允许最大1%(即1/(1+99))的垃圾收集时间。

GC自适应的调节策略:
Parallel Scavenge收集器有一个参数 - XX:+UseAdaptiveSizePolicy 。当这个参数打开之后,就不需要手工指定新生代的大小、Eden与Survivor区的比例、晋升老年代对象年龄等细节参数了,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或者最大的吞吐量,这种调节方式称为GC自适应的调节策略(GC Ergonomics)。

对比分析:
Parallel Scavenge收集器 VS CMS等收集器:

Parallel Scavenge收集器的特点是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能地缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标则是达到一个可控制的吞吐量(Throughput)。由于与吞吐量关系密切,ParallelScavenge收集器也经常称为“吞吐量优先”收集器。

Parallel Scavenge收集器 VS ParNew收集器:

Parallel Scavenge收集器与ParNew收集器的一个重要区别是它具有自适应调节策略。

Serial Old收集器(老年代收集器,串行GC)

Serial Old是Serial收集器的老年代版本,它同样是一个单线程收集器,使用标记 - 整理算法。

这个收集器的主要意义也是供客户端模式下的HotSpot虚拟机使用。如果在服务端模式下,它也可能有两种用途:
一种是在JDK 5以及之前的版本中与Parallel Scavenge收集器搭配使用,另外一种就是作为CMS收集器发生失败时的后备预案,在并发收集发生Concurrent Mode Failure时使用。

Serial Old收集器的工作过程如下图所示:
在这里插入图片描述
需要说明一下,Parallel Scavenge收集器架构中本身有PS MarkSweep 收集器来进行老年代收集,并非直接调用Serial Old收集器,但是这个PS MarkSweep收集器与Serial Old的实现几乎是一样的,所以在官方的许多资料中都是直接以Serial Old代替PS MarkSweep进行讲解。

Parallel Old收集器(老年代收集器,并行GC)

Parallel Old是Parallel Scavenge收集器的老年代版本,支持多线程并发收集,基于标记 - 整理算法实现。

这个收集器是直到JDK 6时才开始提供的,在此之前,新生代的Parallel Scavenge收集器一直处于相当尴尬的状态,原因是如果新生代选择了Parallel Scavenge收集器,老年代除了 Serial Old(PS MarkSweep)收集器以外别无选择,其他表现良好的老年代收集器,如CMS无法与它配合工作。由于老年代Serial Old收集器在服务端应用性能上的“拖累”,使用Parallel Scavenge收集器也未必能在整体上获得吞吐量最大化的效果。

同样,由于单线程的老年代收集中无法充分利用服务器多处理器的并行处理能力,在老年代内存空间很大而且 硬件规格比较高级的运行环境中,这种组合的总吞吐量甚至不一定比 ParNew加CMS的组合来得优秀。 直到Parallel Old收集器出现后,“吞吐量优先”收集器终于有了比较名副其实的搭配组合,在注重吞吐量或者处理器资源较为稀缺的场合, 都可以优先考虑Parallel Scavenge加Parallel Old收集器这个组合。

Parallel Old收集器的工作过程如下图所示:

在这里插入图片描述

CMS收集器(老年代收集器,并发GC)

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用集中在互联网站或者B/S系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。CMS收集器就非常符合这类应用的需求。CMS收集器是基于“标记—清除”算法实现的,它的运作过程相对于前面几种收集器来说更复杂一些,整个过程分为4个步骤:

  1. 初始标记(CMS initial mark):初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快,需要“Stop The World”。
  2. 并发标记(CMS concurrent mark):并发标记阶段就是进行GC Roots Tracing的过程。
  3. 重新标记(CMS remark):重新标记阶段是为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短,仍然需要“Stop The World”。
  4. 并发清除(CMS concurrent sweep):并发清除阶段会清除对象。

由于整个过程中耗时最长的并发标记和并发清除过程收集器线程都可以与用户线程一起工作,所以,从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的

Concurrent Mark Sweep收集器的工作过程如下图所示:

在这里插入图片描述
优点:

CMS是一款优秀的收集器,它的主要优点在名字上已经体现出来了:并发收集低停顿

缺点:

  1. CMS收集器对CPU资源非常敏感。

其实,面向并发设计的程序都对CPU资源比较敏感。在并发阶段,它虽然不会导致用户线程停顿,但是会因为占用了一部分线程(或者说CPU资源)而导致应用程序变慢,总吞吐量会降低。
CMS默认启动的回收线程数是(CPU数量+3)/4,也就是当CPU在4个以上时,并发回收时垃圾收集线程不少于25%的CPU资源,并且随着CPU数量的增加而下降。但是当CPU不足4个(譬如2个)时,CMS对用户程序的影响就可能变得很大。

  1. CMS收集器无法处理浮动垃圾。

CMS收集器无法处理浮动垃圾,可能出现“Concurrent Mode Failure”失败而导致另一次Full GC的产生。由于CMS并发清理阶段用户线程还在运行着,伴随程序运行自然就还会有新的垃圾不断产生,这一部分垃圾出现在标记过程之后,CMS无法在当次收集中处理掉它们,只好留待下一次GC时再清理掉。这一部分垃圾就称为“浮动垃圾”。
也是由于在垃圾收集阶段用户线程还需要运行,那也就还需要预留有足够的内存空间(老年代空间)给用户线程使用,因此CMS收集器不能像其他收集器那样等到老年代几乎完全被填满了再进行收集,需要预留一部分空间提供并发收集时的程序运作使用。要是CMS运行期间预留的内存无法满足程序需要,就会出现一次“Concurrent Mode Failure”失败,这时虚拟机将启动后备预案:临时启用Serial Old收集器来重新进行老年代的垃圾收集,这样停顿时间就很长了。

  1. CMS收集器会产生大量空间碎片。

CMS是一款基于“标记—清除”算法实现的收集器,这意味着收集结束时会有大量空间碎片产生。空间碎片过多时,将会给大对象分配带来很大麻烦,往往会出现老年代还有很大空间剩余,但是无法找到足够大的连续空间来分配当前对象,不得不提前触发一次Full GC。

Garbage First 收集器(唯一的全区域的垃圾回收器)

Garbage First(简称G1)收集器是垃圾收集器技术发展历史上的里程碑式的成果,它开创了收集器面向局部收集的设计思路和基于Region 的内存布局形式

G1是一款主要面向服务端应用的垃圾收集器。G1(Garbage First)垃圾回收器是用在heap memory很大的情况下,把heap划分为很多很多的region块,然后并行的对其进行垃圾回收。

G1垃圾回收器在清除实例所占用的内存空间后,还会做内存压缩。

G1垃圾回收器回收region的时候基本不会STW,而是基于 most garbage优先回收(整体来看是基于"标 记-整理"算法,从局部(两个region之间)基于"复制"算法) 的策略来对region进行垃圾回收的。无论如何,G1收集器采用的算法都意味着一个region有可能属于Eden,Survivor或者Tenured内存区域。

下图中的E表示该region属于Eden内存区域,S表示属于Survivor内存区域,T表示属于Tenured内存区域。图中空白的表示未使用的内存空间。G1垃圾收集器还增加了一种新的内存区域,叫做Humongous内存区域,如图中的H块。这种内存区域主要用于存储大对象,即大小超过一个region大小的50%的对象。

G1收集器Region分区示意图如下所示:
在这里插入图片描述
年轻代垃圾收集

在G1垃圾收集器中,年轻代的垃圾回收过程使用复制算法。把Eden区和Survivor区的对象复制到新的Survivor区域。

如下图所示:
在这里插入图片描述
老年代垃圾收集:

对于老年代上的垃圾收集,G1垃圾收集器也分为4个阶段,基本跟CMS垃圾收集器一样,但略有不同:

  1. 初始标记(Initial Mark)阶段

同CMS垃圾收集器的Initial Mark阶段一样,G1也需要暂停应用程序的执行,它会标记从根对象出发,在根对象的第一层孩子节点中标记所有可达的对象。但是G1的垃圾收集器的Initial Mark阶段是跟minor gc一同发生的。也就是说,在G1中,你不用像在CMS那样,单独暂停应用程序的执行来运行Initial Mark阶段,而是在G1触发minor gc的时候一并将年老代上的Initial Mark给做了。

  1. 并发标记(Concurrent Mark)阶段

在这个阶段G1做的事情跟CMS一样。但G1同时还多做了一件事情,就是如果在Concurrent Mark阶段中,发现哪些Tenured region中对象的存活率很小或者基本没有对象存活,那么G1就会在这个阶段将其回收掉,而不用等到后面的clean up阶段。这也是Garbage First名字的由来。同时,在该阶段,G1会计算每个 region的对象存活率,方便后面的clean up阶段使用 。

  1. 最终标记(CMS中的Remark阶段)

在这个阶段G1做的事情跟CMS一样, 但是采用的算法不同,G1采用一种叫做SATB(snapshot-at-the-begining)的算法能够在Remark阶段更快的标记可达对象。

  1. 筛选回收(Clean up/Copy)阶段

在G1中,没有CMS中对应的Sweep阶段。相反 它有一个Clean up/Copy阶段,在这个阶段中,G1会挑选出那些对象存活率低的region进行回收,这个阶段也是和minor gc一同发生的。

如下图所示:

在这里插入图片描述

G1(Garbage-First)是一款面向服务端应用的垃圾收集器。HotSpot开发团队赋予它的使命是未来可以替换掉JDK 1.5中发布的CMS收集器。 如果你的应用追求低停顿,G1可以作为选择;如果你的应用追求吞吐量,G1并不带来特别明显的好处。

低延迟垃圾回收器

衡量垃圾收集器的三项最重要的指标是:内存占用(Footprint)、 吞吐量(Throughput)和延迟(Latency),三者共同构成了一个“不可能三角”。三者总体的表现会随技术进步而越来越好,但是要在这三个方面同时具有卓越表现的“完美”收集器是极其困难甚至是不可能的, 一款优秀的收集器通常最多可以同时达成其中的两项。

在内存占用、吞吐量和延迟这三项指标里,延迟的重要性日益凸显,越发备受关注。其原因是随着计算机硬件的发展、性能的提升,我 们越来越能容忍收集器多占用一点点内存;硬件性能增长,对软件系统的处理能力是有直接助益的,硬件的规格和性能越高,也有助于降低集器运行时对应用程序的影响,换句话说,吞吐量会更高。但对延迟则不是这样,硬件规格提升,准确地说是内存的扩大对延迟反而会带来负面的效果,这点也是很符合直观思维的:虚拟机要回收完整的1TB的堆内存,毫无疑问要比回收1GB的堆内存耗费更多时间。由此,我们就不难理解为何延迟会成为垃圾收集器最被重视的性能指标了。

现在我们来观察一下现在已接触过的垃圾收集器的停顿状况,如下图所示。

图中浅色阶段表示必须挂起用户线程,深色表示收集器线程与用户线程是并发工作的

由下图可见,在CMS和G1之前的全部收集器,其工作的所有步骤都会产生“ Stop The World ”式的停顿;CMS和G1 分别使用增量更新和原始快照技术,实现了标记阶段的并发,不会因管理的堆内存变大,要标记的对象变多而导致停顿时间随之增长。但是对于标记阶段之后的处理,仍未得到妥善解决。CMS使用标记-清除算法,虽然避免了整理阶段收集器带来的停顿,但是清除算法不论如何优化改进,在设计原理上避免不了空间碎片的产生,随着空间碎片不断淤积最终依然逃不过“Stop The World”的命运。G1虽然可以按更小的粒度进行回收,从而抑制整理阶段出现时间过长的停顿,但毕竟也还是要暂停的。

在这里插入图片描述
从上图中注意到了,最后的两款收集器,ShenandoahZGC,几乎整个工作过程全部都是并发的,只有初始标记、最终标记这些阶段有短暂的停顿,这部分停顿的时间基本上是固定的,与堆的容量、堆中对象的数量没有正比例关系。实际上,它们都可以在任意可管理的(譬如现在ZGC只能管理4TB以内的堆)堆容量下,实现垃圾收集的停顿都不超过十毫秒。这种以前听起来是天方夜谭、匪夷所思的目标。 这两款目前仍处于实验状态的收集器,被官方命名为“低延迟垃圾收集器”(Low-Latency Garbage Collector或者Low-Pause-Time Garbage Collector)。

Shenandoah收集器

Shenandoah是一 款只有OpenJDK才会包含,而OracleJDK里反而不存在的收集器。这个收集器的目标是实现一 种能在任何堆内存大小下都可以把垃圾收集的停顿时间限制在十毫秒以内的垃圾收集器,该目标意味着相比CMS和G1,Shenandoah不仅要进行并发的垃圾标记,还要并发地进行对象清理后的整理动作

Shenandoah更像是G1的下一代继承者,它们两者有着相似的堆内存布局,在初始标记、并发标记等许多阶段的处理思路上都高度一 致,甚至还直接共享了一部分实现代码,这使得部分对G1的打磨改进 和Bug修改会同时反映在Shenandoah之上,而由于Shenandoah加入所带来的一些新特性,也有部分会出现在G1收集器中,譬如在并发失败后 作为“逃生门”的Full GC,G1就是由于合并了Shenandoah的代码才获得多线程Full GC的支持。

那Shenandoah相比起G1又有什么改进呢?

虽然Shenandoah也是使用基于Region的堆内存布局,同样有着用于存放大对象的 Humongous Region,默认的回收策略也同样是优先处理回收价值最大的Region……

但在管理堆内存方面,它与G1至少有三个明显的不同之处:

  • 最重要的当然是支持并发的整理算法,G1的回收阶段是可以多线程并行的,但却不能与用户线程并发。
  • 其次,Shenandoah(目前)是默认不使用分代收集的,换言之,不会有专门的新生代Region或者老年代Region的存在,没有实现分代,并不是说分代对Shenandoah没有价值,这更多是出于性价比的权衡,基于工作量上的考虑而将其放到优先级较低的位置上。
  • 最后, Shenandoah摒弃了在G1中耗费大量内存和计算资源去维护的记忆集,改用名为“连接矩阵”(Connection Matrix)的全局数据结构来记录跨 Region 的引用关系,降低了处理跨代指针时的记忆集维护消耗,也降低了伪共享问题的发生概率。连接矩阵可以简单理解为一张二维表格,如果Region N有对象指向Region M,就在表格的N行M列中打上一个标记,如下图所示,如果Region 5中的对象Baz引用了Region 3的Foo,Foo又引用了Region 1的Bar,那连接矩阵中的5行3列、3行1列就应该被打上标记。在回收时通过这张表格就可以得出哪些Region之间 产生了跨代引用。

Shenandoah收集器的连接矩阵示意图:
在这里插入图片描述
Shenandoah收集器的工作过程大致可以划分为以下九个阶段:

  1. 初始标记(Initial Marking):与G1一样,首先标记与GC Roots直接关联的对象,这个阶段仍是“Stop The World”的,但停顿时间与堆大小无关,只与GC Roots的数量相关
  2. 并发标记(Concurrent Marking):与G1一样,遍历对象图,标记出全部可达的对象,这个阶段是与用户线程一起并发的,时间长短取决于堆中存活对象的数量以及对象图的结构复杂程度
  3. 最终标记(Final Marking):与G1一样,处理剩余的SATB扫描,并在这个阶段统计出回收价值最高的Region,将这些Region构成一组回收集(Collection Set)。最终标记阶段也会有一小段短暂的停顿。
  4. 并发清理(Concurrent Cleanup):这个阶段用于清理那些整个区域内连一个存活对象都没有找到的Region(这类Region被称为Immediate Garbage Region)。
  5. 并发回收(Concurrent Evacuation):并发回收阶段是Shenandoah与之前HotSpot中其他收集器的核心差异。在这个阶段,Shenandoah要把回收集里面的存活对象先复制一份到其他未被使用Region之中。复制对象这件事情如果将用户线程冻结起来再做那是相当简单的,但如果两者必须要同时并发进行的话,就变得复杂起来了。其困难点是在移动对象的同时,用户线程仍然可能不停对被移动的对象进行读写访问,移动对象是一次性的行为,但移动之后整个内存中所有指向该对象的引用都还是旧对象的地址,这是很难一瞬间全部改变过来的。对于并发回收阶段遇到的这些困难Shenandoah将会通过读屏障和被称为“Brooks Pointers”的转发指针来解决。并发回收阶段运行的时间长短取决于回收集的大小。
  6. 初始引用更新(Initial Update Reference):并发回收阶段复制对象结束后,还需要把堆中所有指向旧对象的引用修正到复制后的新地址,这个操作称为引用更新。引用更新的初始化阶段实际上并未做什么具体的处理,设立这个阶段只是为了建立一个线程集合点,确保所有并发回收阶段中进行的收集器线程都已完成分配给它们的对象移动任务而已。初始引用更新时间很短,会产生一个非常短暂的停顿。
  7. 并发引用更新(Concurrent Update Reference):真正开始进行引用更新操作,这个阶段是与用户线程一起并发的,时间长短取决于内存中涉及的引用数量的多少。并发引用更新与并发标记不同,它不再需要沿着对象图来搜索,只需要按照内存物理地址的顺序,线性地搜索出引用类型,把旧值改为新值即可
  8. 最终引用更新(Final Update Reference):解决了堆中的引用更新 后,还要修正存在于GC
    Roots中的引用。这个阶段是Shenandoah的最后 一次停顿,停顿时间只与GC Roots的数量相关。
  9. 并发清理(Concurrent Cleanup):经过并发回收和引用更新之后,整个回收集中所有的Region已再无存活对象,这些Region都变成 Immediate Garbage Regions了,最后再调用一次并发清理过程来回收这些Region的内存空间,供以后新对象分配使用。

以上对Shenandoah收集器这九个阶段的工作过程的描述可能拆分得略为琐碎,只要抓住其中三个最重要的并发阶段(并发标记、并发 回收、并发引用更新),就能比较容易理清Shenandoah是如何运作的了。

ZGC收集器

ZGC(这款收集器的名字就叫作Z Garbage Collector)是一款在JDK 11中新加入的具有实验性质的低延迟垃圾收集器,是由Oracle公司研发的。

ZGC和Shenandoah的目标是高度相似的,都希望在尽可能对吞吐量影响不太大的前提下,实现在任意堆内存大小下都可以把垃圾收集的停顿时间限制在十毫秒以内的低延迟

但是ZGC和Shenandoah的实现思路又是差异显著的,如果说Shenandoah像是G1收集器的实际继承者的话,那ZGC就更像是PGC(Pauseless GC)和C4(Concurrent Continuously Compacting Collector)收集器的同胞兄弟。 早在2005年,运行在Azul VM上的PGC就已经实现了标记和整理阶段都全程与用户线程并发运行的垃圾收集,而运行在Zing VM上的C4收集器是PGC继续演进的产物,主要增加了分代收集支持,大幅提升了收集器能够承受的对象分配速度

我们可以给ZGC下一个这样的定义来概括它的主要特征:ZGC收集器是一款基于Region内存布局的,不设分代的,使用了读屏障、染色指针和内存多重映射等技术来实现可并发的标记-整理算法的,以低延迟为首要目标的一款垃圾收集器

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值